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Abstract

A lack of insight into the relationship between (non-)
functional requirements and architectural solutions often
leads to problems in real life projects. This paper presents a
model that concentrates on the mapping of non-functional
requirements onto functional requirements for architecture
design. We build a framework that both provides a model
and a repeatable method to transform conflicting require-
ments into a system decomposition. This paper presents the
framework, and discusses two cases onto which the method
is applied. In one case, the method is successfully used to
reconstruct the high-level structure of a system from its re-
quirements. The second case is one in which the method was
actually used to create a system design fitting the stakehold-
ers’ needs, and that is reproducible from its requirements.

1. Introduction

The primary result of any architectural design process
is a blueprint of a system, identifying the main compo-
nents and their relationships from different views. A topic
that is currently under close scrutiny is the derivation of
these architectural components from the functional and
non-functional system requirements. The well-known dis-
cipline of Functional Decomposition (FD) can be used as a
basis, but will by itself rarely yield a system that fulfills the
non-functional requirements. This is not surprising, since
rules of Functional Decomposition only deal with generic
best practices for achieving software quality, such as high
cohesion and low coupling. FD has no rules to deal with
system-specific quality requirements.

The need for an integrated approach for Functional Re-
quirements, Non-Functional Requirements and Architec-
ture was discussed in [12]. In [5] this subject is dealt with by
first obtaining a functionality-based architecture, and then
applying architectural transformations to satisfy the “Qual-

ity Requirements”. A good example of a detailed method
using this iterative approach is given in [7]. In this paper, we
have chosen a more direct approach. Our aim is to develop a
method for decomposing a system based on the conflicts in
the system requirements. We have named this method Non-
Functional Decomposition (NFD) to highlight the contrast
with Functional Decomposition, and to emphasize the im-
portance of Non-Functional Requirements in this process.

There are several other research groups working on the
relationship between requirements and architecture of soft-
ware. Publications of the Software Engineering Institute
(mostly technical reports) show the development of a frame-
work [2] and tooling [3] towards methodical architectural
design. Another group has developed the Component-Bus-
System-Property (CBSP) method for iterative architectural
refinement of requirements [9, 10]. In [9], the need is men-
tioned to group artifacts to create an architecture, but no in-
dication is given how to do this. NFD proposes a method for
grouping and splitting of architectural entities based on re-
quirements, and is complementary to the CBSP approach in
that sense.

A clear benefit of the NFD approach is that it focuses on
non-functional and other supplementary requirements right
from the beginning, yielding a defined trace from those re-
quirements to the system structure. Moreover, the develop-
ment process and its requirements are also integrated in the
approach, giving a better basis for architectural and project
decision trade-offs.

The sequel of this paper is as follows. First, we will
present and discuss some of the shortcomings of the gener-
ally accepted model for the architectural design process. We
will then develop a refined model of this process. Then we
will describe the process for deriving system structure from
supplementary requirements that is based on this model.
The succeeding sections then describe two cases: one in
which the NFD method was used, and one in which it is ap-
plied retrospectively to show its validity. We conclude with
a discussion.
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2. Motivation for Non-Functional Decomposi-
tion

Our interest for Non-Functional Decomposition is based
on a number of distinct observations from our substantial
experience in architectural design.

e Cohesive force of supplementary requirements: good
architectures tend to cluster functions with similar sup-
plementary requirements in the same subsystem.

e Divide-and-conquer conflict resolution principle: if a
subsystem has to fulfill conflicting requirements, it is
useful to separate the parts that cause the conflict(s).

o Entanglement of function, structure and building pro-
cess of software: these three elements are highly inter-
related.

NFD is a framework consisting of both a model of the el-
ements involved in the architectural process, and a method
for architecting software-intensive systems based on sys-
tem requirements. It is a framework in the sense that it
does not venture into the details of achieving specific qual-
ity attributes (or other supplementary requirements); there
is ample literature available for each conceivable attribute.
Rather, it highlights the relationships between these require-
ments, their conflicts and ways to resolve them. It also helps
in making choices about the development process.

3. Model of requirements and architecture
3.1. Accepted model for architectural design

When studying the available literature on the relation-
ship between system requirements and software architec-
ture, the following widely accepted model emerges.

System Requirements are usually divided into Func-
tional and Non-Functional Requirements. These Non-
Functional Requirements (NFRs) are often referred to as
Quality (Attribute) Requirements; these two are treated
more or less as synonyms. A generally accepted prin-
ciple is the leading NFR principle: in designing system
architectures, the Non-Functional or Quality Require-
ments are at least as important as the Functional Require-
ments. In order to satisfy NFRs the software architect ap-
plies Architectural Strategies to the system design, such
as design patterns, layering techniques, etc. The archi-
tect’s task then becomes an n-dimensional optimization
problem: find the combination of architectural strate-
gies that yields a system with the best fit to the n NFRs.

The implicit model underlying this model is depicted in
Figure 1. Although the simplicity of this view has its merits,
in our experience it has some shortcomings. Particularly, the
relationship between quality attributes and non-functional
requirements is oversimplified, and it ignores the fact that
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Figure 1. Accepted model of relationship be-
tween requirements and architecture.

functional requirements can be very important in system de-
sign. It also ignores that NFRs often put constraints on the
system development process rather than on the system ar-
chitecture, implying that architectural choices are not the
only contributors to satisfy NFRs. Conversely, requirements
on the development process like project deadlines and bud-
get limitations can have a large impact on system architec-
ture.

3.2. Refined requirements classification for NFD

Our new NFD model, as is illustrated in Figure 2, re-
fines the classification of requirements, and is more de-
tailed on the non-functional aspects. Two major differences
come to the foreground: functional requirements are split
into primary and secondary functional requirements, and
the secondary functional requirements are grouped together
with the non-functional requirements. This group is called
supplementary requirements. Additionally, a distinction is
made between two types of non-functional requirements:
quality attributes and implementation requirements.

Let us now define the Primary and Supplementary Re-
quirements groups in more detail.

Primary Functional Requirements are demands that re-
quire functions which directly contribute to the goal of the
system, or yield direct value to its users. They represent the
principal functionality of the system. The identification of
primary requirements (which ones to select) is similar to de-
termining which processes in an organization are primary
processes. All primary requirements are functional (there
are no non-functional primary requirements), but not all
functional requirements are primary requirements, as will
be explained in the next section.

Supplementary Requirements represent all other require-
ments imposed on the system. They can be functional or
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Figure 2. The NFD model of the relationship between system requirements and architecture.

non-functional. Supplementary requirements (SRs) are al-
ways about primary requirements, and usually put con-
straints on how the primary functionality is implemented. In
the NFD model, the Supplementary Requirements are fur-
ther divided into three subcategories:

1. Secondary Functional Requirements (SFRs) require
functionality that is secondary to the goal of the sys-
tem. Examples are functions needed to manage the sys-
tem or its data, logging or tracing functions, or func-
tions that implement some legal requirement. Like all
other SRs, they usually apply to a particular subset of
the primary requirements. For example, “All transac-
tions in module X should be logged”, or “access to
data in chapter Y is subject to authorization accord-
ing to model Z”. SFRs are usually not quantifiable: the
system either has the functionality or it doesn’t.

2. Quality Attribute Requirements (QARs) are quan-
tifiable requirements about system quality attributes.
They can always be expressed as a number and a scale,
e.g. following Gilb’s notation techniques [8]. Exam-
ples of QARs are reliability, usability, performance
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and supportability. There are many taxonomies avail-
able, e.g. 1ISO 9126'.

. Implementation Requirements constitute the third cat-
egory of supplementary requirements. They put con-
straints on the system that cannot be measured by
system assessment, and incorporate e.g. managerial
issues. Examples of IRs are time-to-market, maxi-
mum cost, resource availability and outsourcibility.
Implementation requirements can be expressed in “-
ilities” that make them resemble quality attribute re-
quirements, such as affordability or viability, but they
are not about system quality. However, they can be just
as important to system design as functional or quality
requirements.

A system’s compliance with QARs and SFRs can in prin-

ciple be measured by anyone having access to the system
once it has been realized, regardless of whether they know
about its history or its cost. Compliance with Implementa-

1

Note that a requirement in the ISO 9126 category “Functionality” is
not a quality attribute requirement in the NFD model; it can be either
a primary or a secondary functional requirement
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tion Requirements can only be assessed by looking at how
the system was realized.

There is a relationship between Secondary Functional
Requirements (SFRs) and functional solutions to Quality
Attribute Requirements, which will be discussed later. SFRs
can usually be traced back to a high-level quality need,
but to express them as a quality requirement would leave
too much room for interpretation. For example, the require-
ment to log system errors over an SMTP interface is an im-
plementation of a manageability need, but to just require
that “System management should require at most 0.1 FTE”
would allow other, perhaps less desirable solutions. Satisfy-
ing Quality Attribute Requirements may also entail adding
functionality to the system, but this time the choice of func-
tionality is at the architect’s decision.

3.3. The nature of requirement conflicts

The reason for a classification into primary and sec-
ondary requirements is a preparation for the NFD process
that leads to system decomposition exploiting the require-
ment conflicts. The NFD version of the leading NFR prin-
ciple cited above is that in designing system architectures,
the supplementary requirements are more important than
the primary requirements. Primary requirements are never
conflicting: if they would, the requirements would be intrin-
sically inconsistent or the problem statement poorly posed.
However, supplementary requirements including secondary
functional requirements, can appear to be conflicting, as is
explained in the following paragraph.

Requirements on a software system are not intrinsically
conflicting, because conflicts arise from limitations in the
solutions domain. Boehm and In [4] have based their soft-
ware tools for identifying quality-requirement conflicts on
this fact. We have further analyzed the common solutions
to satisfy supplementary requirements, including quality at-
tributes. Our analysis clarifies that some quality attributes
and implementation requirements may be so tightly bound
to certain types of solutions, that they are effectively inher-
ently conflicting. This situation arises when a quality at-
tribute can only be achieved by one class of strategies, and
when this class of strategies is invariably detrimental to an-
other quality attribute. The Feature-Solution graphs intro-
duced in [7] provide a good way to visualize these conflicts.
We will illustrate this point with a few examples.

We have categorized the strategies for fulfilling software
quality requirements into three types and nicknamed them
the three dimensions of software construction: the process
dimension, the structure dimension and the functional di-
mension.

1. One way to achieve supplementary requirements is by
making choices in the software building process. Mod-
els like the Capability Maturity Model and other Soft-

ware Process Improvement practices generally aim at
improving the reliability of software. Recommended
practices have been documented to achieve certain
quantified Safety Integrity Levels [11] or to fulfill cer-
tain security requirements [6]. These practices tend
to make the software construction process more ex-
pensive, giving rise to the first example of inherently
conflicting requirements: reliability versus affordabil-
ity (not an NFD quality attribute, but possibly an im-
plementation requirement).

2. Another way to influence quality attributes or to sat-
isfy other supplementary requirements is by making
choices in the structure of the software. Examples of
software structuring solutions include layering, apply-
ing of design patterns, choosing higher or lower level
languages, modifying the granularity or modularity of
the software, and so on. We have started to explore
this area somewhat in [13]. Generally speaking, the
structure-based solutions seem to have one common
element: more structure (i.e. higher level programming
language, more layers, higher granularity etc.) means
better modifiability, but less efficient code. This is the
second example of inherently conflicting quality at-
tributes: modifiability versus efficiency.

3. The third way to achieve supplementary requirements
is by building functionality that is specifically aimed at
achieving a quality or implementation objective. Ex-
amples are encryption and access control functionality
to achieve a certain security goal [6], or caching func-
tionality to achieve a certain response time and thus in-
crease usability. Although these types of strategies are
not specifically detrimental to other quality attributes,
they do increase the size and complexity of the sys-
tem, leading to effects such as lower affordability and
reliability. The reader should note the difference be-
tween secondary functional requirements with under-
lying quality needs and functional solutions aimed at
satisfying quality attribute requirements. In the former
case, the functional solution is raised to the status of
requirement and the responsibility of the requirement
specifier. In the latter case, the functional solution is
the responsibility of the architect. In practical situa-
tions, this dichotomy may be ambiguous and quality
needs are translated into functional solutions by an
iterative process that involves both the requirements
specifier and the architect.

In the above examples of “inherently conflicting” re-
quirements, the conflicts emerge when applying the solution
strategies to a single subsystem or component. These con-
flicts can often be resolved by separating the subsystem or
component into different parts, and applying different solu-
tion strategies to the respective parts. Viewed from this per-
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spective, modifiability and efficiency need not be conflict-
ing: one can decompose a system into low-coupled subsys-
tems for modifiability, and then apply strategies for making
the code of each subsystem more efficient. Approaches of
this kind are put into practice intuitively by experienced ar-
chitects, and we have modelled them in our Non-functional
Decomposition Framework.

3.4. Applying solution strategies

The NFD model of the architecture process refines the n-
dimensional optimization problem of the consensus model
into a 3 x 3 matrix. The cells of this matrix contain strate-
gies from each of the three solution dimensions fulfilling
each of the three types of requirements. Whereas the diago-
nal of the matrix contains obvious strategies (e.g. functional
solutions to functional requirements), the off-diagonal cells
often suggest important solutions that can help achieve re-
quirements that would otherwise pose problems. Without
being complete, we provide some examples of each of the
matrix cells.

Functional solutions aimed at functional requirements:
the required functions should be implemented.

Functional solutions aimed at quality-attribute require-
ments: these are functions like encryption, access control,
caching and duplication, that are specifically designed to
achieve a quality objective.

Functional solutions aimed at implementation require-
ments: implementation requirements, like outsourcing or
time-to-market limitations, often exist. Their realization
points to e.g. reuse of off-the-shelf components or purchas-
ing and integrating commercial products.

Structural solutions aimed at functional requirements:
examples of structures that contribute to functional require-
ments are database normalization, extracting of generic
functionality, functional or non-functional decomposition.

Structural solutions aimed at quality-attribute require-
ments: lead to programming in patterns, but there are also
other structural strategies contributing to quality attributes,
such as the choice of programming language or correct
parametrization. The NFD method itself also contributes to
fulfilling quality-attribute requirements.

Structural solutions aimed at implementation require-
ments: implementation requirements like preferred release
schedules can be realized by adapting the structure of the
system to accommodate incremental deployment. Another
example is the choice of a rapid development platform
(fourth generation language), which dictates a particular
system structure. NFD can also be applied here.

Process solutions aimed at functional requirements:
an example is using a conventional cascade-development
method, which prioritizes system functionality over time
and budget limitations.

Process solutions aimed at quality-attribute require-
ments: examples of these are best practices from the
Software Process Improvement community to improve reli-
ability, or Common Criteria assurance packages to achieve
security goals.

Process solutions aimed at implementation require-
ments: implementation requirements such as ‘“user in-
volvement” can be realized by prototyping, or “strict de-
ployment deadline” by using a development method
such as EVO or RAD that employs time-boxing tech-
niques.

The combination of applied solutions in the process di-
mension results in the best development process to fit the
system requirements. The sum of the applied functional so-
lutions and the realization of the primary functional require-
ments together compose the system functionality. The sys-
tem architecture consists of a high-level description of the
applied functional (logical view) and structural (subsystem,
development, deployment views) solutions.

3.5. The role of the NFD process

Non-Functional Decomposition (NFD) is a strategy in
the structural dimension of software construction. The NFD
process helps to optimize the structure of the system for all
supplementary requirements, including implementation and
secondary functional requirements, which are generally as-
sociated with process or functional solutions first. It does
this by adapting the system structure to the requirement con-
flicts in the system, and isolating conflicting requirements in
subsystems that can then be individually optimized by ap-
plying process, structural or functional strategies. It is es-
sentially an iterative divide-and-conquer strategy for resolv-
ing requirement conflicts.

4. The NFD process

The process of NFD is depicted in Figure 3 and contains
the following steps.

Gather and prioritize requirements can be based on any
modern requirements elicitation technique, provided that
the documented requirements show how the Primary Func-
tional Requirements (PFRs) are mapped to the Supplemen-
tary Requirements (SRs). It is important that the require-
ments are somehow prioritized, since prioritization of PFRs
is important for project and release planning, and priori-
tization of SRs is important for the architecture. Example
from the Unified Process: in the UP, FRs are generally doc-
umented as use cases, and SRs as supplementary specifi-
cations. The NFD method requires that the supplementary
specifications are made specific to (groups of) use cases,
e.g. by documenting them in the Use-Case Descriptions,
or specifying to which use cases SRs apply in the Supple-
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Figure 3. The NFD Process.

mentary Specifications document. Another way of linking
SRs to FRs is the use of so-called Specific Scenarios as de-
scribed in [2].

Group functions based on supplementary requirements is
the process of finding all (primary) functional requirements
that share or have similar supplementary requirements, and
grouping them together. This will yield a number of cross-
sections of the functionality of the system, depending on
which supplementary requirement is used as a grouping cri-
terion. In this step, the distinction between PFRs and SRs
is less important: each group will have a number of func-
tions, originating from both primary and secondary require-
ments, which will be treated equally during the remainder
of the process. Example: a time-to-market priority grouping
will divide functionality into groups that are candidates to
be included in different release phases of the system, while
availability grouping will divide functionality into candi-
date groups to run on platforms with differing availability
characteristics.

Identify supplementary requirement conflicts yields two
types of conflicts:

1. Grouping conflicts are caused by differences in group-
ing of functions, i.e. the grouping of the functions is
significantly different from one SR to the other. Ex-

Lower Modifiability *

WorkFlow

Higher Security \';

DataEntry

Analysis

Figure 4. Grouping conflict example.

ample: there are three function groups, called Work-
Flow, DataEntry and Analysis (Figure 4). Security re-
quirements for DataEntry and Analysis are similar and
more restrictive then those for WorkFlow, but modi-
fiability requirements for Analysis are more stringent
than those for DataEntry and WorkFlow.

2. In-group conflicts are conflicting supplementary re-
quirements within one function group. Example: the
Analysis function group from the previous example
has both critical performance requirements and high
modifiability requirements.

Split conflicting function groups deals with in-group con-
flicts. Most of the time, a further analysis of an in-group
conflict will show that the conflicting requirements can ac-
tually be assigned to different functions. These functions are
then separated, leading to a splitting of the function group.
The resulting two or more new function groups may then be
reconsidered for being included in other function groups, so
the process re-enters the “Group functions based on SRs”
stage. This loop is repeated until no in-group conflicts are
left that can be split further. Function groups that cannot be
split in any way are flagged as risk factors. They deserve
close attention during the rest of the process and need to be
dealt with prior to large-scale project implementation, e.g.
in an architectural prototype.

Draft and compare candidate decompositions: After the
in-group conflicts are solved, the resulting grouping con-
flicts will be the basis for the architectural decomposition.
A number of candidate decompositions into architectural
components result, each favoring the main supplementary
requirement that the function grouping is based upon.

At this stage, prioritization of supplementary require-
ments becomes important. In our experience, the candidate
decomposition that is based on the SRs having the high-
est stakeholder priority, yields the architecture that best fits
the stakeholder requirements. This does not mean that we
suggest that the n-dimensional optimization problem men-
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tioned earlier can be reduced to a series of one-dimensional
optimizations, designing for the most important require-
ment first and then narrowing down the design choices fur-
ther for each requirement. But in the decomposition pro-
cess, it turns out that the decompositions based on the SRs
with the highest priority have the best chance of yielding
a system the stakeholders can live with. In case of doubt,
an impact analysis of the top three decompositions can be
made, e.g. by using the CBAM method [1]. The decompo-
sition with the best fit to the stakeholder’s needs consider-
ing the total cost of ownership is selected for implementa-
tion.

5. Case: criminal investigation system
5.1. Background

Two IT organizations affiliated with the Dutch ministry
of internal affairs, the ISC and the CIP, are currently devel-
oping a product line for nationwide processing of and access
to criminal investigation and intelligence data.> The product
line is called Politiesuite Opsporing (PSO, “Police Suite for
Investigation™). One of the authors is the lead software ar-
chitect for PSO, and NFD was used to design the suite’s
top-level decomposition. The main challenge was to create
an architecture that would allow the addition of many new
products to the suite in the years to come, without compro-
mising the strict privacy and confidentiality requirements on
the system.

5.2. Summary of requirements

The suite’s primary functionality is the support of all
business processes related to criminal investigation, includ-
ing management of the processes, gathering of data through
multiple channels, and structuring and analysis of the data.
The three most important supplementary requirements ac-
cording to the stakeholders are:

SR1 Authorization: access to criminal investigation data is
restricted by special privacy laws. Unauthorized access
to privileged data is by far the biggest threat to a crim-
inal investigation system.

SR2 Reliability: reliable application of authorization and
other business rules is crucial. The system should be
designed in such a way that the enforcement of espe-
cially authorization rules is reliable and stable, even af-
ter several product generations.

SR3 Development time: the criminal investigation systems
currently in use are based on obsolete architectures and

2 The authors would like to thank the ISC and CIP organizations for
granting permission to publish this case.

there is an urgent need in the field to support new func-
tionality. Exceeding the stated deadline of one year of
development time is unacceptable.

SR1 is a secondary functional requirement, SR2 a qual-
ity attribute requirement, and SR3 an implementation re-
quirement.

5.3. Results

NFD was applied by first mapping the most important
supplementary requirements onto the functional features,
and then basing the main architectural decomposition on
this mapping. SR1 applies specifically to the data gath-
ered for criminal investigation purposes. It turned out that
the most reliable and best maintainable solution for the fu-
ture was to create a central component for access control
and storage of these data. Since the legal name for stor-
age of such data is a police register, this central component
was named the “register vault”. By using off-the-shelf com-
ponents supplied by a database vendor, the register vault
could be assembled and an architectural prototype evalu-
ated within a few months time, making a good start at satis-
fying SR3.

In this case, the Rational Unified Process®’ (RUP®)
was used to streamline the development process. The RUP
Supplementary Specifications artifact is the place to doc-
ument quality and other supplementary specifications, but
the standard template treats these as system wide or “gen-
eral” requirements. We changed the template slightly to
accommodate documenting the mapping between primary
and supplementary requirements. We did this at the level of
“features” as defined by RUP. This allowed us to document
the trace from primary and supplementary requirements to
the system decomposition design decisions.

In the end, the Non-Functional Decomposition principles
turned out to be very useful in communicating to the stake-
holders how our design decisions were related to their stated
supplementary requirements.

6. Case: Dutch road-pricing system

In this section we will apply the NFD model and pro-
cess to analyze a large system on roadpricing. One of the
authors was involved in this project (until it was suspended
for political reasons), which is described below. Although
NFD was not available at the time, applying the method ret-
rospectively to this case presents a good illustration of its
principles.

3 RUP, Rational and Rational Unified Process are trademarks of Inter-
national Business Machines Corporation.
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6.1. Background

In the late 1990s, the Dutch government decided to dras-
tically change the tax system for automobile owners and
drivers. Automobile tax traditionally consisted of gasoline
tax, annual motor vehicle tax and BPM (personal motor ve-
hicle tax payed once when purchasing a vehicle). The sys-
tem should be replaced by a direct tax system based on us-
age: gasoline tax would be reduced to the legal European
minimum, and annual motor vehicle tax and BPM would be
completely replaced by a roadpricing scheme called “Kilo-
meterheffing” (“Charging by kilometer”), hereafter referred
to as KMH. By differentiated pricing of road segments
based on the time of day and location, the scheme could also
be used to make drivers avoid congested (and thus more ex-
pensive) areas during rush hours. Feasibility of the scheme
would highly depend on the use of IT systems, some of
which would have to be in the vehicle. The government
planned to share the cost of developing and manufacturing
the in-vehicle systems (called “Mobimeters”) with the mul-
timedia, communication and automobile industries by mak-
ing generic components of those systems available to those
industries.

6.2. System requirements

The Mobimeter requirements were published* in order to
facilitate discussion with industry partners. Without going
into too much detail, the original requirements can roughly
be summarized as follows.

PF1 The system shall continuously measure the position
and driving direction of the vehicle.

PF2 The tariff used for calculating the cost during a jour-
ney is determined on the basis of the following param-
eters (hereinafter referred to as Tariff Parameters):

e Date and time;
e Vehicle position;
e Direction of travel;
o Tariff table;
e Vehicle category.
PF3 A driver shall be notified of the applied tariff while
driving.
PF4 The system shall determine the distance travelled by a

vehicle.

PF5 The mobility costs due is calculated as being the prod-
uct of the distance travelled times the current tariff.

4 The original requirements were drawn up by a team led by Maarten
Boasson (University of Amsterdam). They were based on the “Mo-
bimiles” report of Roel Pieper (University of Twente), which was
never formally published

PF6 At least once every month in which 1000 kilome-
ters has been driven or at least once per elapsed year,
whichever comes earlier, all data shall be communi-
cated to the tax office.

PF7 The system shall be able to receive new tariff tables.

The associated supplementary requirements (SRs) are
summarized below. For brevity, we only mention the most
important ones:

S1 Privacy: a vehicle’s mobility patterns may not be de-
ducible, either in real time (tracking) or afterwards
from system data (tracing).

S2 Verifiability: the KMH Road-Pricing System shall en-
able verification that the road pricing charge has been
determined correctly, without requiring more than one
physical inspection per year.

S3 Provability: The system shall enable drivers to verify
the correctness of the charges by inspecting all rele-
vant data.

S4 Security: All data required for the KMH Road-Pricing
System process will be protected against unauthorized
modification.

S8 Re-usability: all in-vehicle system functions that could
be useful for other applications shall be made available
for re-use by third parties.

S12 Viability: industry partners and the relevant govern-
mental and non-governmental organizations shall be
involved as much as possible in the development of
the KMH system.

S13 Standardization: any interfaces to be designed for in-
vehicle equipment shall be developed in close cooper-
ation with the relevant standardization bodies.

S1, S4 and S8 are quality-attribute requirements. S2 and
S3 are secondary functional requirements. S12 and S13 are
implementation requirements that originally did not occur
in the requirements document, but in the project plan. We
mention them here because in the NFD model they qualify
as supplementary requirements. As will be shown, they did
impact the system architecture.

Table 1 shows how the original supplementary require-
ments map onto the primary requirements. Note that some
of the mappings apply to subsets of a particular primary
functions only, e.g. standardization of only the interface, or
protection of only the data:> a finer granularity of function-
ality will help us split and re-group the functions later on.
The next step in the mapping process would be to split up

5 The presence of supplementary requirements that apply to data ele-
ments or storage is quite common in our experience; these require-
ments often lead to special data storage components, especially if they
have high priority.
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PF1 PF2 | PF3 | PF4 | PF5 | PF6 | PF7
S1 X X
S2 X X X X X
S3 X X X X X
S4 X X X X X X
S8 X X X X
S12 X X X X
S13 X X

Table 1. Original mapping of supplementary
onto primary requirements.

PF1 PF2 | PF3 | PF4 | PF5 | F6a | F6b | F6c | PF7

S1 X X X

S2 X X X X X X

S3 X X X X X X

S4 X X X X X X X X
S8 X X X X X X
S12 X X X X X X
S13 X X X X

Table 2. Second iteration mapping of supple-
mentary onto primary requirements.

the PFs to achieve a more exact mapping, but that exercise
would be too detailed for this paper.

A number of grouping strategies present themselves, but
let us first look at the glaring in-group conflict concern-
ing privacy versus verifiability and provability in the group
PF1+PF6. According to NFD, we split the group to resolve
the conflict. Clearly, if all data on which the charge is based
are communicated to the tax office, the privacy requirement
is violated. The objective is to split PF6 in such a way that
only less privacy-sensitive data are communicated and si-
multaneously maintain the verifiability. After checking back
with the stakeholders for the business-need behind PF6, it
turns out that we can split as follows

F6a At least once every month in which 1000 kilome-
ters has been driven or at least once per elapsed year,
whichever comes earlier, the total charges and the to-
tal distance per tariff shall be communicated to the tax
office.

F6b Spot checks: a travelling vehicle shall be able to an-
swer challenges made by roadside-enforcement equip-
ment by transferring all currently measured data and
the current tariff table.

Fé6c On request by the driver, the system shall communi-
cate all data used to calculate charges to him.

F6a is sufficient to fulfill PF6’s underlying need; F6b is a
functional solution to S2, and F6c is a functional solution to
S3. F6b adds a short-range communication function to the
Mobimeter, which falls under the re-usability and standard-
ization requirements S8, S12 and S13. This analysis leads
to a new mapping table.

Table 2 shows the SR/FR mapping after splitting PF6.
The conflict between S1 and S2 is now isolated in compo-
nent F6b, the spot check function. This reflects the issue that
privacy-sensitive data are present in the spot-check equip-
ment. We put this conflict aside as a risk that will be man-
aged by a protocol surrounding the management of these
data: how long they may be stored, to what purpose, etc.

Let us now look at grouping criteria. According to
the stakeholders, security, privacy and viability through

Traffic Information

Charging Alarm

Trusted Element

KMH Functionality Value Added Services

Localization

Service Primitives ‘

Long Range
Communication

Short Range
Communication

ITS Platform

Figure 5. Mobimeter architecture.

re-usability are the most important supplementary require-
ments and in that order of priority. The security require-
ment S4 groups the associated data of all functions except
the driver display, which basically means that the Mo-
bimeter should contain a secure data storage component or
“trusted element” that all KMH functions should have ac-
cess to. Privacy requirement S1 no longer applies to
F6a, since we split off the data from which the mobil-
ity pattern can be deduced. So S1 now groups PF1, F6b
and F6c. S1/F6b becomes the basis for storage require-
ments on the roadside spot-check system, and the PF1/F6c¢
group leads to a subsystem called the “user log”.

Finally, the viability and re-usability requirements S8
and S12 group the communications functions of F6a/b/c and
PF7, the display of PF3 and the vehicle localization of PF1
into a subsystem called the “In-vehicle Telematics Services
platform”. This platform is designed to have standardized
interfaces (S13) both to the KMH-specific part of the in-
vehicle equipment and to any additional (optional) service-
related components such as a navigation system. It gives ac-
cess to services like GPS localization and long-range and
short-range digital communication. The final system de-
composition is shown in Figure 5. In the final version, the
localization function was separated from the ITS platform
in order to fulfill an additional reusability requirement on
GPS equipment, which was already supplied in some cars.
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7. Conclusions and discussion

In this paper, we have presented the Non-Functional De-
composition (NFD) model as a technique to bring more
clarity and structure in the mapping of requirements onto
a system architecture. The key of our technique is to split
the requirements into primary and supplementary require-
ments, and to create a mapping between those categories.
The NFD process helps in optimizing the structure of the
system for all supplementary requirements, including im-
plementation and secondary functional requirements. NFD
adapts the system structure to the requirement conflicts in
the system and isolates conflicting requirements in subsys-
tems that can then be individually optimized by applying
process, structural or functional solution strategies of which
examples were presented.

The PSO product line was presented as a case study of
the application of NFD. The main result here was a well
documented traceability between supplementary require-
ments and system decomposition design decisions. This
traceability supported the project team in communicating
to the stakeholders the effects of their stated requirements,
and the rationale behind the main design decisions.

The KMH project was used as another case study, where
we have indicated how the Mobimeter architecture as it was
published, can be reconstructed with the NFD model. The
details of the iterations and the break-down of all functional
requirements needed to make the exact mappings cannot be
printed here because of space limitations. The examples of
resolving in-group conflicts and grouping functions accord-
ing to supplementary requirements were given to show the
application of the method and principles of NFD.

The validity of the observations on architecting is not
only confirmed by our daily work, but can be easily veri-
fied by evaluating successful architectures like client/server
or n-tier architectures. The components in these architec-
tures all differ in their supplementary behavior, and display
specific geographical accessability, modifiability, efficiency
or portability attributes.

We view NFD as a framework that uses the observations
made in section 2 to improve the architecting process. These
observations are not new, we believe they have always been
implicit in the work of experienced designers. By mak-
ing them explicit, NFD makes the architecting process of
transforming requirements into system design more repro-
ducible, more transparent and more reliable. Future work
is in further application of NFD in actual technically com-
plex projects, and in the exploration of other areas in which
it could be deployed.
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