
Multi-Dimensional Separation of Concerns in Requirements Engineering

Ana Moreira
†
, Awais Rashid

‡
, João Araújo

†

†
Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
‡
Computing Department, Infolab21, Lancaster University, Lancaster LA1 4WA, UK

{amm | ja} @di.fct.unl.pt; awais@comp.lancs.ac.uk

Abstract

Existing requirements engineering approaches

manage broadly scoped requirements and constraints

in a fashion that is largely two-dimensional, where

functional requirements serve as the base

decomposition with non-functional requirements

cutting across them. Therefore, crosscutting functional

requirements are not effectively handled. This in turn

leads to architecture trade-offs being mainly guided by

the non-functional requirements, so that the system

quality attributes can be satisfied.

In this paper, we propose a uniform treatment of

concerns at the requirements engineering level,

regardless of their functional, non-functional or

crosscutting nature. Our approach is based on the

observation that concerns in a system are, in fact, a

subset, and concrete realisations, of abstract concerns

in a meta concern space. One can delineate

requirements according to these abstract concerns to

derive more system-specific, concrete concerns. We

introduce the notion of a compositional intersection,

which allows us to choose appropriate sets of concerns

in our multi-dimensional separation as a basis to

observe trade-offs among other concerns. This

provides a rigorous analysis of requirements-level

trade-offs as well as important insights into various

architectural choices available to satisfy a particular

functional or non-functional concern.

1. Introduction

An effective requirements engineering (RE)

approach must reconcile the need to achieve separation

of concerns with the need to satisfy broadly scoped

requirements and constraints. Viewpoints [6], use

cases [9] and goals [12] offer means of partitioning

requirements as a set of partial specifications that aid

traceability and consistency management. However,

ensuring the consistency of these partial specifications

with global requirements and constraints is largely

unsupported.

Some RE approaches have explicitly focused on

separation of broadly scoped properties, e.g., [1, 12,

15, 17, 18, 22]. However, such separation is largely

two-dimensional. Functional requirements, separated

using mechanisms such as viewpoints, use cases or

themes, serve as the base decomposition with analysis

conducted against a set of non-functional requirements

or overall system goals or behaviour that cut across the

base. It has been argued that crosscutting is a

phenomenon that is not limited to non-functional

requirements and that functional requirements can also

often cut across parts of a system [16]. Existing

separation of concerns mechanisms at the RE level do

not explicitly account for such crosscutting nature of

functional requirements. Consequently, they cannot be

handled effectively leading to a lack of identification

and characterisation of their influence on other

concerns in the system. Furthermore, this leads to

architecture quality analyses being dominantly driven

by non-functional requirements and their associated

trade-offs. The influence of functional requirements

and their associated trade-offs on architectural quality

is largely ignored.

In this paper, we propose that requirements should

be decomposed in a uniform fashion regardless of their

functional or non-functional nature. This makes it

possible to project any particular set of requirements

on a range of other requirements, hence supporting a

multi-dimensional separation. The key characteristics

of our approach include:

the definition of a meta concern space from where

concrete system-specific concerns can be derived

based on the specific features of the problem

domain;

the notion of a compositional intersection which

makes it possible to identify suitable sets of

concerns in our multi-dimensional separation as a

basis to observe trade-offs among other concerns;

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

use our early trade-off analyses to provide insights

into the architecture choices suited to each

concern hence, facilitating alignment of the

derived architecture with the requirements’

intentions.

Section 2 discusses existing approaches to separate

crosscutting concerns at the RE level and highlights

how these suffer from the tyranny of dominant

decomposition [20]. Section 3 introduces our approach

for multi-dimensional separation of requirements level

concerns and a context sensitive tourist guide used to

demonstrate our approach. Section 4 discusses the

notion of the meta concern space and its use in the

delineation of system requirements into concrete

concerns. Section 5 focuses on specification of

composition rules for each concern as well as

compositional intersections to identify potential trade-

off points for subsequent analysis. Section 6 provides

insights into the initial architecture choices, resulting

from the trade-offs, to satisfy each concern. Section 7

discusses some related work, while section 8 concludes

the paper and identifies directions for future work.

2. Background and motivation

Separation of concerns has been contemplated by

well-known requirements engineering approaches such

as goal-oriented techniques and viewpoints. In goal-

oriented approaches [12], such as KAOS [3] and i*

[21], a goal is an objective that the system under

consideration should achieve. It can be formulated at

different levels of abstraction and covers concerns in

two dimensions, i.e., functional and non-functional.

KAOS uses a formal language (first-order temporal

logic with real-time constraints) to specify critical parts

of the system, besides allowing informal modelling.

Goals are used to detect and manage conflicts among

requirements. The i* framework identifies and models

organisational requirements and adopts the goal and

softgoal modelling concepts as its dimensions. A

softgoal represents a non-functional requirement we

expect to satisfy within acceptable limits.

Separation of crosscutting properties has also been

considered in PREView [18], a viewpoint-oriented

requirements engineering method. A PREView

viewpoint encapsulates partial information about the

system. Requirements are organised in terms of several

viewpoints, and analysis is conducted against a set of

concerns intended to correspond broadly to the overall

system goals. In applications of the method, the

concerns that are identified are typically high-level

non-functional requirements. Here again the separation

of concerns is two-dimensional: one being the

viewpoints that handle functional requirements and the

PREView-specific notion of concerns which

encapsulate non-functional properties.

The Aspect-Oriented Requirements Engineering

(AORE) model we presented in [17] is based on

treating PREView concerns as adaptations of the

aspect-oriented programming [5] notion of aspects

and, consequently, carries out the analysis of broadly

scoped properties against a base set of viewpoints. A

refinement of the model presented in [15] supports

separation of the specification of aspectual

requirements, non-aspectual requirements and

composition rules in modules representing coherent

abstractions and following well-defined templates. The

modularisation makes it possible to establish early

trade-offs between aspectual requirements hence

providing support for negotiation and subsequent

decision-making among stakeholders. However, the

composition rules have to be written with reference to

a dominant decomposition that aspects cut across.

In Theme/Doc [1] analysis is carried out by first

identifying a set of actions in the requirements list

which are, in turn, used to identify crosscutting

behaviours. A theme is a collection of structures and

behaviours that represent one feature. While

Theme/Doc treats all concerns as themes, there is still

the notion of base themes and crosscutting themes

hence diluting the uniformity of the model with a

strong base-aspect dichotomy.

The discussion above demonstrates that, while

existing RE approaches support analyses of system

requirements from the perspective of non-functional

properties, support for identifying the influence of

crosscutting functional properties (or a combination of

functional and non-functional properties) is not

available. Nor is there any support for incorporating

such an influence during trade-off analysis, the

subsequent negotiation among stakeholders and the

derivation of an architecture design based on the

combination of the possible choices for each concern.

The multi-dimensional approach presented in this

paper addresses the above issues by eliminating the

dominant decomposition through uniform treatment of

the various types of concerns in the system. In deriving

our multi-dimensional approach we have built on the

strengths of the model in [15], mainly the informal

composition rules with concern-specific actions and

operators.

In [14] we proposed a model for multi-dimentional

separation of concerns at the RE level. This paper adds

to the model by defining a meta concern space, by

adding the notion of a compositional intersection

which helps to identify suitable sets of concerns in our

multi-dimensional separation as a basis to observe

trade-offs among other concerns, and by using our

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

early trade-off analyses to provide insights into the

architecture choices suited to each concern.

3. Multi-dimensional separation of
concerns in RE

Concerns in our multi-dimensional approach imply

any coherent collection of requirements. We treat all

concerns in a uniform fashion and hence, do not

classify concerns into viewpoints, use cases or aspects

though our concerns still encapsulate coherent sets of

functional and non-functional requirements. We

perceive the concern space at the requirements level as

a hypercube. Figure 1 shows a simplified

representation of this as a cube. Each face of the

hypercube represents a particular concern of interest.

By treating all concerns as equal we can choose any set

of concerns as a base to project the influence of

another concern or set of concerns onto this base. The

block arrows represent projections. This flexible,

multi-dimensional view makes it possible to handle

both crosscutting functional and non-functional

requirements in an effective fashion. We observe later,

in Section 6, that the chosen architecture lies

somewhere in the area bounded by the hypercube

walls.

Figure 1. Hypercube representing concerns in a
system

3.1. Running example

In order to illustrate the various concepts and

techniques, we use a case study based on a location

and context sensitive tourist guide system developed at

Lancaster [4]. The system has the following key

characteristics:

“It provides an electronic hand-held guide that

offers the following facilities to the visitors: (1)

retrieve information about the city, including

information about their current location; (2) provide

route guidance to help visitors move between locations

on the tour; (3) enter a set of preferences and interests

to generate suitable tours of the city; (4) access

external services, such as hotel and theatre ticket

reservations.”

The various requirements-level concerns in this

particular system and their categorisation based on our

meta concern space is described next. This is followed

by a discussion of our concern composition and trade-

off analysis mechanisms.

4. Meta concern space and system space

When developing our multi-dimensional approach

to RE, we have taken into account the fact that most

requirements engineers, and developers in general for

that matter, are used to thinking in two-dimensional

terms. A shift from such a two-dimensional

perspective on requirements engineering to a fully

multi-dimensional view poses a significant cognitive

challenge. Furthermore, requirements engineers and

developers often still find it a non-trivial task to

identify and categorise requirements using well-

established mechanisms such as viewpoints and use

cases. So it is even more crucial to facilitate

identification of concerns that would form suitable

candidates for providing a multi-dimensional view and

subsequent analysis of such a view.

Concern identification in our approach is based on

the observation that certain concerns, both functional

and non-functional, appear time and again during

system development. A catalogue of non-functional

concerns has been provided by [2] but we extend the

notion of such a catalogue to typical functional

concerns. Examples of such repeatedly appearing

concerns include registration, ordering, billing,

booking, mobility, availability and security (note that

the examples include both functional and non-

functional concerns). Based on this observation, we

divide the requirements space into two separate spaces

(cf. Figure 2):

System space, which comprises of the various

types of systems developers want to realise.

Meta concern space, which comprises of the above

mentioned abstract set of typical concerns

(functional and non-functional), which repeatedly

manifest themselves in various systems.

Each system in the system space has a number of

desirable features. These lead to establishment of the

requirements (gray dots in Figure 2), through

interviews, ethnographic studies, analysis of business

practices, etc., of the system to be developed (depicted

by the solid arrows in Figure 2). Once the requirements

have been derived from desirable system features, we

categorise them into concerns from the meta concern

space (shown by dashed arrows in Figure 2). This

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

leads to concrete, system- and domain-specific

definitions (ovals in Figure 2) of the abstract concerns

and can be achieved iteratively and incrementally, by

handling a small set of concerns at a time. Note that

not all concerns in the meta concern space are

necessarily used during this categorisation; mostly

only a subset of concerns relevant to the problem

domain is needed. The categorisation of requirements

into concrete concerns leads to creation of a

relationship between the meta concern space and the

system space (shown by the gray arrow in Figure 2).

This creates a conceptual binding between the abstract

representations of concerns in the meta concern space

with their concrete representations in the system space.

Meta Concern

Space

System

Space

Requirements

Figure 2. The system space and meta concern space

From the outline specification of our tourist guide

case study, we can identify several concerns from the

meta concern space manifesting themselves. For

example, the visitors access information while moving

between locations so Information Retrieval and

Mobility are two concerns of interest. The system also

interacts with external reservation services so

compatibility is also a concern. Other concerns are

more clearly visible in the detailed system descriptions,

notes of discussions and interviews with stakeholders

as well as domain knowledge of experts in designing

mobile interactive systems. Consequently, the concrete

concerns (from the catalogue of abstract concerns in

the meta concern space) we have identified for our

mobile tourist guide case study are:

Authentication: to check personal information

against a valid ID before loaning the mobile

device to a visitor.

Availability: to ensure that the system is always

reactive to stimuli.

Compatibility: to ensure interaction with external

services such as hotel and ticket reservation.

Connectivity: to provide network connections to

access external services.

Context: to recognise the change in location as a

visitor moves around the city.

Customisability: to allow the visitor to configure

the tours to their personal preferences and

interests.

Information Retrieval: to obtain information (e.g.,

by visitors or the tourist information centre staff)

from the system.

Information Update: to add, remove or update

information about the various sites of interest to

tourists.

Mobility: to ensure that visitors can access the

system while on the move.

Navigation: to provide directions for a visitor to

follow a tour.

Portability: to provide lightweight devices for

accessing the system.

Registration: to obtain personal information from

visitors before loaning out the electronic devices

for accessing the system.

Cost: to account for costs (e.g., development,

equipment, deployment, operation maintenance).

For the concrete realisation of our approach, we

have chosen to represent both the abstract concerns in

the meta concern space as well as their concrete

realisations using well-defined templates based on the

eXtensible Markup Language (XML). Such a semi-

structured representation of the concerns makes it

possible for us to define composition rules specifying

how a concern constrains or influences the

requirements in other concerns (cf. section 5). It also

makes it possible to analyse the concerns and their

compositions for establishment of potential trade-off

points. A similar XML-based approach effectively

facilitated partial automation of the requirements

analysis in our earlier work on the Aspectual

Requirements Composition and Decision Support tool,

ARCADE [15]. In fact, our composition rules build

upon the composition operators and actions developed

as part of this earlier work (cf. section 5).

Throughout the paper we will be using the concerns

Information Retrieval and Mobility from our tourist

guide case study to illustrate our approach. Figures 3

and 4 show the abstract definitions of these concerns in

the meta concern space. The abstract definitions are

enclosed in <MetaConcern> </MetaConcern> tags,

which also specify the name of the concern in the meta

concern space. The definition also includes a brief

description of the concern, some typical examples of

use derived from past experience and domain

knowledge and the (meta) concerns it might relate to or

interact with (these concern names are enclosed in the

<Relationships> </Relationships> tags). Note that the

relationships information is provided as a helpful guide

and may not hold for all systems and, in several cases,

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

there might be additional relationships with other

concerns in a system.

<?xml version="1.0" ?>
- <MetaConcern name="InformationRetrieval">

<Description>The operation of accessing information from a
computer system </Description>

<Examples>Database retrieval, Multimedia retrieval</Examples>
 <Relationships> Availability, Mobility, InformationUpdate

</Relationships>
</MetaConcern>

Figure 3. InformationRetrieval meta concern in
XML

<?xml version="1.0" ?>
- <MetaConcern name="Mobility">

<Description>The quality of moving freely </Description>
<Examples>Wireless networks, Mobile phones, Context aware

systems </Examples>
 <Relationships> Availability, Portability, Context </Relationships>

</MetaConcern>

Figure 4. Mobility meta concern in XML

Figures 5 and 6 show the XML specifications of the

concrete concerns InformationRetrieval and Mobility

in our mobile tourist guide. A Concern tag denotes the

start of a concern while a Requirement tag denotes the

start of a requirement. Refinements such as sub-

requirements are represented via the nesting of the

tags. Each requirement has an id which is unique

within its defining scope, i.e., the concern. Concern

names are unique within the case study. However,

XML namespaces can also be used to realise naming

scopes.

<?xml version="1.0" ?>
- <Concern name="InformationRetrieval">

- <Requirement id="1">
It should be possible to retrieve information from the system.
<Requirement id="1.1">It should be possible to access

information about the attractions. </Requirement>
<Requirement id="1.2">It should be possible to access

information about the current location. </Requirement>
</Requirement>
<Requirement id="1.3">It should be possible to obtain a list of

available preset tours. </Requirement>
</Concern>

Figure 5. InformationRetrival concern in XML

<?xml version="1.0" ?>
- <Concern name="Mobility">

- <Requirement id="1">
The system will be accessed on the move.
<Requirement id="1.1">The system will be accessed from within

a limited area. </Requirement>
</Requirement>

</Concern>

Figure 6. Mobility concern in XML

5. Composition and trade-off analysis

Having categorised the various requirements of the

system into concrete concerns from our meta concern

space, we move onto defining composition rules for

each concern. This is followed by choosing specific

sets of concerns, in a methodical fashion, as base to

observe trade-offs among other concerns.

5.1. Composition specification

The potential relationships that a concern might

bear with other concerns are documented in our

abstract concern definitions in the meta concern space.

These relationships might not hold in case of all

systems and in some cases additional relationships

with other concerns might arise. However, they still

provide a good starting point for a requirements

engineer to start specifying how a concern constrains

or influences requirements in other concerns it relates

to. In other words, our composition specification,

provided in the form of composition rules, describes

how a concern cuts across other concerns in our multi-

dimensional separation.

Composition rules define the relationships between

concerns requirements at a fine granularity. Like our

concern definitions, we have an XML-based

composition specification language to specify the

composition rules. Note that composition rule

definitions can be governed by an XML schema.

However, for simplification we describe the structure

of composition rules with reference to some examples

and not the XML schema definition. As shown in

figures 7 and 8, a coherent set of composition rules is

encapsulated in a Composition tag. Figure 7

encapsulates all compositions for InformationRetrieval

while Figure 8 does so for Mobility. The semantics of

the Requirement tag here differ from the tags in the

concern definition. The concern to which a

requirement belongs is explicitly listed as an attribute;

this is essential for scoping purposes. If a concern

requirement has any sub-requirements these must be

explicitly excluded or included. This is done by

providing an “include” or “exclude” value for the

optional children attribute. A value of “all” for the id

attribute in a Requirement tag implies that all the

requirements within the specified concern are to be

constrained.

The Constraint tag defines an, often concern-

specific, action and operator defining how the

requirements from one concern constrain those in a set

of other concerns. Although the actions and operators

are informal, they have clearly defined meaning and

semantics to ensure valid composition of concerns.

This provides the architects and designers a systematic

means to interpret the requirements specification. The

Outcome tag defines the result of constraining the

concern requirements. The action value describes

whether another concern requirement or a set of

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

concern requirements must be satisfied or merely the

constraint specified has to be fulfilled.

The informality of the actions and operators ensures

that the composition specification is still readable by

the stakeholders, an important consideration during

requirements engineering. For example, if we look at

the first composition rule in Figure 7 and focus on the

values in bold we get the following: “Information
Retrieval must be provided during all the
Customisability requirements, requirement 1 of

Navigation and requirement 1 of Mobility, including

its children, with the outcome that the specified

constraint is fulfilled”. The second part of the

composition rule should be interpreted in a similar

fashion.

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="InformationRetrieval" id="all">
- <Constraint action="provide" operator="during">

<Requirement concern="Customisability" id="all" />
<Requirement concern="Navigation" id="1" />
<Requirement concern="Mobility" id="1" children="include" />
<Requirement concern="InformationUpdate" id="all" />

</Constraint>
<Outcome action="fulfilled" />

</Requirement>
</Composition>

Figure 7. Composition rule for InformationRetrieval

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Mobility" id="all">
- <Constraint action="affect" operator="on">

<Requirement concern="Availability" id="all" />
<Requirement concern="Connectivity" id="all" />
<Requirement concern="Context" id="all" />
<Requirement concern="Navigation" id="1" />
<Requirement concern="InformationRetrieval" id="all" />

</Constraint>
<Outcome action="fulfilled" />

</Requirement>
</Composition>

Figure 8. Composition rule for Mobility

Composition rules in the multi-dimensional

approach have been inspired by our earlier work on

composition of aspectual requirements during

viewpoint-oriented requirements engineering [15]. The

key difference is that a concern constrains other

concerns and not only viewpoints.

Tables 1, 2 and 3 describe the semantics of the

actions and operators for Constraint and Outcome,

including those used in the composition rules shown in

figures 7, 8.

The interesting point to note here is that not all

operators are concern-specific, e.g., XOR is a generic

operator. Also, the actions for the Outcome are generic

and not specific to a particular concern. It is, however,

not possible to say whether Outcome actions are

always generic, as more case studies need to be carried

out before arriving at such a conclusion. It is also

worth noting that although the same operator might

apply to different concern requirements, not all

operator-action combinations are valid in the

Constraint specification for a particular concern. We

have validated these in other case studies previously,

e.g., [15], and aim to continue validation with further

case studies.

Table 1. Description of Constraint actions

 Constraint Action

Type Description

enforce Used to impose an additional condition over a set of

concern requirements.

ensure Used to assert that a condition that should exist for a set

of concern requirements actually exists.

provide Used to specify additional features to be incorporated for

a set of concern requirements.

applied Used to describe rules that apply to a set of concern

requirements and might alter their outcome.

exclude Used to exclude some concerns or requirements if the

value all is specified.

affect Used to specify that a set of concern requirements will

alter the state of another concern.

Table 2. Description of Constraint operators

 Constraint Operator

Type Description

during Describes the temporal interval during which a set of

requirements is being satisfied.

between Describes the temporal interval falling between the

satisfaction of two requirements. The interval starts when

the first requirement is satisfied and ends when the second

one is to start being satisfied.

on Describes the temporal point after a set of requirements

has been satisfied.

for Describes that additional features will complement the

concern requirements.

with Describes that a condition will hold for two sets of

requirements with respect to each other.

in Describes that a condition will hold for a set of

requirements that has been satisfied.

AND, OR,

XOR
Conjunction, disjunction and exclusive-OR (when either

requirement is satisfied but not both)

Table 3. Description of Outcome actions

Outcome Action

Type Description

satisfied Used to assert that a set of viewpoint requirements will

be satisfied after the constraints of a concern

requirement have been applied.

fulfilled Used to assert that the constraints of a concern

requirement have been successfully imposed.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

5.2. Compositional intersection

In order to identify trade-off points, one needs to

observe the interactions of a concern with other

concerns with reference to some base. This is quite

straightforward in two-dimensional approaches to

separation of concerns in RE, e.g., PREView [18], the

NFR Framework [2] and our earlier work on aspect-

oriented requirements engineering [15, 17]. In all these

approaches, functional requirements provide a preset

base for observing interactions among the non-

functional concerns in order to identify potential trade-

off points. Such a preset base is not readily available in

our multi-dimensional separation as all concerns are

peers and a particular type of concerns does not

dominate those of another.

We can see from the composition rules examples in

section 5.1 that functional requirements (e.g.,

InformationRetrieval) can also constrain or influence

requirements within non-functional concerns in our

multi-dimensional separation. Therefore, the trade-off

analysis also must be multi-dimensional in nature. The

brute force method of doing this would be to choose

every possible combination of concerns as a basis to

study interactions among two concerns and then

synthesising the results of such an analysis. However,

this poses a significant overhead, even in the presence

of tool support, as the number of potential

combinations of concerns to be used as a base would

be extremely high. We, therefore, introduce the notion

of a compositional intersection (denoted by “ ”) to

constrain the potential combinations of concerns to be

used as a base to those combinations that have real

value to offer in terms of requirements-level trade-off

analysis.

Let C1, C2, C3, …, Cn be the concrete concerns in

our system requirements and Sc1, Sc2, Sc3, …, Scn be

the sets of concerns that each of them cuts across

respectively. Let us suppose we want to identify the

trade-offs (if any) between C1 and C2. In order to do

this we should take the compositional intersection of

Sc1 and Sc2. However, note that a compositional

intersection is not a simple intersection as in set theory.

Let Ca be a member of both Sc1 and Sc2. Ca will appear

in the compositional intersection iff both C1 and C2

influence/constrain the same or overlapping set of

requirements in Ca. That is, if C1 and C2 influence

disjoint sets then Ca will not be in the compositional

intersection.

If the result of the compositional intersection is a

non-empty set, we need to analyse the trade-offs and

specify any priorities. The process is repeated for C1

and C3 and so on until C1 and Cn. It is then repeated for

C2 but, obviously, the compositional intersection for C2

and C1 does not need to be repeated since it has

already been carried out when identifying trade-off

points for C1. The process continues to be repeated for

all concerns up to Cn. This means that the maximum

number of compositional intersections we have to take

is given by:

!2)!*2(

!2

n

n
Cn

where n is the number of concerns.

Let us consider a requirements specification with n

concerns where the set of concerns each concern cuts

across is given by SC1={C2, C5, C7, Cn}, SC2 = {C5, C6,

Cn} and SCn = {C1, C2, C9}. The remaining concerns do

not cut across any other concern. Let us represent the

compositional intersection set between concerns Ci and

Cj as SCi SCj. The list of possible compositional

intersection sets will be:

SC1 SC2 = {C5, Cn}

SC1 SCn = {C2}

SC2 SCn =
This illustrates that the number of compositional

intersections is likely to be smaller than the

combinatorial number, since some concerns may not

affect, i.e., be related to, many other concerns.

For our tourist guide example, if SInformationRetrieval =

{Customisability, Mobility, InformationUpdate,

Navigation} denotes the set of concerns that

InformationRetrival cuts across and SMobility =

{Availability, Connectivity, Context, Navigation,

InformationRetrieval} denotes a similar set for

Mobility, the compositional intersection is given by

SInformationReteriaval SMobility = {Navigation} since both

composition rules affect requirement 1 of Navigation.

The compositional intersections provide us with the

trade-off points for our trade-off analysis.

5.3. Trade-off analysis

Trade-offs are analysed based on the type of

contribution one concern may have on another with

respect to the base identified via the compositional

intersection. These contributions may be positive,

negative or “none”.

Firstly, we build a contribution matrix (cf. Table 4)

where each concern may contribute negatively (-) or

positively (+) to the others (empty cells represent

“don’t care” contributions). Each cell shows the type

of contribution (“-“ or “+”) and also the compositional

intersection set used to find the contribution. If there is

no contribution in one of the directions of the

relationship, then the cell only shows the

compositional intersection. Empty cells denote the

inexistence of a relationship. Therefore, the

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

relationships represented in Table 4 are bi-directional,

meaning that we should analyse the relationship in

both directions, with respect to the same base. For

example, C1 contributes positively to C2 with respect to

C5 and Cn while C2 contributes negatively to C1 with

respect to C5 and Cn. The “composed contribution” is

negative. This means that the direction of the

contribution relationship is important.

The decision about the type of contribution for each

particular case is usually difficult to make, especially if

the base is a set with several concerns. We may look

for inspiration in existing catalogues, such as [2] as

well as experimental and empirical domain knowledge.

Table 4. Contributions between concerns

C1 C2 … Cn

C1 {C5,Cn} {C2}

C2 {C5,Cn}

…

Cn {C2}

Table 5 depicts the contributions between some of

the concerns that compose our tourist guide example.

Table 5. Part of the contribution matrix for the guiding system
(Cont: Context; Cust: customisability; IU: Information Update; Mob: Mobility; Nav: Navigability)

Availability Information Retrieval Mobility ...

Availability {Cust, Nav, Mob, IU} {Cont, Nav}

Information Retrieval {Cust, Nav, Mob, IU} {Nav}

Mobility {Cont, Nav} {Nav}
…

Focusing our attention on the trade-offs between

InformationRetrieval and Mobility concerns, we must

study the contribution between them with respect to

the base composed of Navigation. Mobility contributes

negatively to InformationRetrieval with respect to

Navigation. This means that the more a visitor moves,

the more difficulties s/he will have to retrieve

information from the system. The contribution in the

opposite direction is also negative, since the more

complex the information needed is, the less mobile the

system may be, as wireless networks have limited

bandwidth.

Having identified the trade-off points, from a

multidimensional perspective, we must now study the

cumulative effect of a set of concerns on a given

concern. Let P1 be the set of concerns that contribute

positively or negatively to C1. We can project these

influences on to C1 to see how the positive or negative

contributions affect C1. We repeat the process for all

the concerns up to Cn.

This process can be better illustrated by folding

each successive column on one another, to obtain the

cumulative effect for situations where several concerns

directly influence a specific one (see Figure 9). Given

that the concerns are repeated in the columns and rows,

the cumulative effect can be observed in both

directions, e.g., from Availability to

InformationRetrieval and from InformationRetrieval to

Availability. This folding provides us the cumulative

projections: the combined influence of a set of

concerns on a particular concern.

Availability

InformationRetrieval

. . .

Mobility

Mobility
Availability

InformationRetrieval

{Cust, Nav, Mob, IU}
-{Cont, Nav}

{Cust, Nav, Mob, IU}

-
{Nav}

{Cont, Nav}
-{Nav}

. .
.

Figure 9. Contribution table folded along its
columns

For example, the cumulative effect of

InformationRetrieval and Mobility on Availability is

positive and, therefore, no trade-off is necessary. On

the other hand, the cumulative effect of Availability

and InformationRetrieval on Mobility is negative.

Therefore, a trade-off must be made in order to handle

this conflicting situation. In [15] we have proposed a

possible solution. The main ideas are still useful in a

multidimensional approach. The solution proposed is

to attribute weights to those concerns that contribute

negatively to each other in relation to a particular base

(the base in [15] was a set of viewpoints, as mentioned

previously). Each weight is a real number in the

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

interval [0 .. 1] and represents the priority of a concern

in relation to the concern it is projected on. These

values are given according to the importance each

concern has with respect to another one. The scales we

are using are based on ideas from fuzzy logic and have

the following meaning:

Very important takes values in the interval] 0,8 ..

1,0]

Important takes values in the interval] 0,5 .. 0,8]

Average takes values in the interval] 0,3 .. 0,5]

Not so important takes values in the interval] 0,1 ..

0,3]

Do not care much takes values in the interval [0 ..

0,1]

Using fuzzy values (very important, important, not

so important, etc) facilitates the stakeholders’ task of

attributing priorities to conflicting concerns. The major

problem occurs when the two concerns involved in the

conflict have the same priority. In this case a decision

must be taken by the stakeholders to lower one of the

priorities.

Conflict resolution might lead to a revision of the

requirements specification (concerns and/or

composition rules). If this happens, then the

projections are revised and any further conflicts arising

are resolved. The cycle is repeated until all conflicts

have been resolved through effective negotiations.

6. Architectural choices

Now that we have undertaken trade-off analysis of

our requirements level concerns, we are armed with a

better understanding of them when making architecture

choices. Before we discuss how these trade-offs

identified at the requirements level pull our choice of

architecture in various directions, it is important to

note that each concern in the multi-dimensional

separation leads to a number of architecture choices

that would serve its needs with varying levels of

stakeholder satisfaction (cf. Figure 10). The gray boxes

in Figure 10 show the ideal or most suitable

architectural choices for each concern. Note that these

architectural choices are unlikely to be the same and

could even be conflicting (which is often the case).

Our trade-off analysis at the requirements level warns

us about such potential conflicts and we can observe,

and appreciate, them clearly when we start making

architecture choices. This highlights the importance of

the early trade-off analysis we carry out at the

requirements level, as some of these conflicts are

resolved early via stakeholder negotiations and

prioritisation of concerns.

Concern1

Concern2

Concernn

...

Concerns Architecture Choices

…

…

…

Figure 10. Architectural choices to satisfy each
concern

Returning to our tourist guide case study, the

Availability concern can be satisfied by a number of

architecture choices, e.g., via multiple replica servers,

high integrity network links, or a combination of both

these factors. At the same time, we can observe that

the Mobility concern requires an architecture based on

a wireless network so that visitors can walk around

while accessing the information. This is at odds with

the architectural needs for Availability (our

requirements analysis already alerted us to the negative

contribution between Mobility and Availability), as

wireless networks tend to be less reliable than

traditional wired networks. Maintaining Availability in

a wireless network would require a small number of

powerful wireless base stations in a restricted area.

However, this would compromise Mobility, which

aims to allow users to roam as freely as possible.

We can observe similar situations for other

concerns. Consider, for example, InformationRetrieval.

The various architectural choices pertain to different

kinds of media made available to the visitors. These

could range from a simple text-based retrieval

mechanism to multimedia retrieval involving

photographs, graphic maps, animations, videos, etc. Of

course, our ideal choice for information retrieval

would be a fully-fledged multimedia solution.

However, we observed in section 5.3 that Mobility and

InformationRetrieval contribute negatively to each

other. We also noted that this negative contribution

was with reference to Navigation. If we look at our

architectural choice for Mobility, this analysis makes

sense. An extensive multimedia solution would help

the visitor retrieve information that is more

comprehensible and useful. At the same time,

mechanisms such as graphic maps would help the

visitor navigate more effectively. However, the

bandwidth available over a wireless connection in a

busy city centre is fairly limited (especially if there are

fewer base stations deployed). This means we would

need to compromise to a less elaborate multimedia

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

solution for information retrieval or accept that

information retrieval may not always be possible, e.g.,

when the user drifts in and out of the range of a

wireless base station.

Cost is a concern that is likely to conflict with

architectural choices for other concerns and often plays

a major role in determining the final system

architecture. In our tourist guide system, choices such

as the number/variety of replica servers, the

number/variety of wireless base stations, the amount of

multimedia content developed, etc. are strongly

influenced and constrained by Cost. From a Cost

perspective the ideal architecture is the one that costs

least but this is unlikely to be the optimal architecture

to support other concerns.

All these, often conflicting architectural choices

pull our final architecture choice in various directions

(cf. Figure 11). Our requirements-level trade-off

analysis gives us some early insights into such a pull

and helps us resolve some of the conflicts. However, it

is when we make our architecture choice that we have

to identify and maintain the optimal position for the

architecture in the presence of such diverse and

conflicting needs of concerns.

Mobility

Availability

C
o

st

In
fo

rm
at

io
n

R
et

ri
ev

al

Architecture

Figure 11. Architectural pull of various concerns

7. Related work

There are other mechanisms that aim to support a

uniform separation of concerns during requirements

engineering. Problem frames [8] focus on the

environment in which a system is located instead of the

system itself or its interfaces. Problem frames are

concerns and each one can be seen as a single-

dimension.

The NFR framework [2] focuses on non-functional

requirements. It does not explicitly deal with

functional concerns, but establishes a link to them.

Also, it does not take into account the crosscutting

nature of those requirements. There are approaches

that integrate functional and non-functional concerns

[3], but, again, the crosscutting nature of those

concerns is not addressed.

Multi-dimensional separation of concerns is

supported by Hyperspaces [20] and Cosmos [19]. The

Hyperspaces approach employs hyperslices as a

decomposition mechanism where concerns are

organised according to multiple dimensions, where

each dimension is partitioned by concerns of the same

type (e.g., classes, functions). A hypermodule is a set

of hyperslices together with a composition rule that

specifies how the hyperslices are composed to form a

more complex hyperslice. Our model can be seen as a

specific instantiation of the hyperspaces model at the

requirements level. Concerns in our model can be

perceived as hyperslices while composition rules

defining the projections can be seen as a specific

instance of hypermodules. Cosmos is a concern-space

modelling schema. Here a concern is any matter of

interest in a system. A concern-space is an organised

representation of concerns and their relationships.

Similar to our work, Cosmos generalises the idea of a

concern hyperspace (or hyperslice). It models concern-

spaces through concerns, relationships and predicates.

Concerns are classified as logical (representing

concepts) and physical (representing elements of

software systems). Some of the concerns and

relationships e.g., physical ones are not relevant at the

requirements level. Moreover, the projections of

concerns on other concerns are not truly achieved.

Grundy proposes an aspect-oriented requirements

engineering method targeted at component based

software development [7]. The approach provides a

categorisation of diverse aspects of a system that each

component provides to end users or other components.

A UML compliant approach to handle quality

attributes (i.e. non-functional requirements) at the early

stages of the development process is proposed in [13].

In both of these approaches, the separation of concerns

is two-dimensional (i.e., functional and non-functional

concerns (or aspects)). Moreover, the projections are

limited from aspects to functional requirements.

In [22], an approach is proposed for discovering

aspects from relationships between goals. This is

accomplished by using a goal model, where functional

and non-functional requirements are represented

through goals and softgoals, plus tasks that contribute

to their satisfaction. The model is analysed in order to

identify aspects. Our work, in contrast, takes a multi-

dimensional perspective by treating concerns and their

trade-offs uniformly across requirements and

architecture. This can be further mapped onto any

design and implementation approach supporting multi-

dimensionality, e.g., [20].

In the Architecture Trade-off Analysis Method

(ATAM) [11] various competing quality attributes and

their interactions are characterised. This is achieved by

building and maintaining both quantitative and

qualitative models of these attributes. The models are

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

used as a basis to evaluate and evolve the architecture.

The main focus of ATAM is on identifying the trade-

off points at the architecture level. The work described

in this paper focuses on identifying conflicting

concerns in a uniform fashion and establishing critical

trade-offs before the architecture is derived.

The PROBE framework [10] supports traceability

of aspectual requirements and associated trade-offs to

detailed design and implementation. Our multi-

dimensional approach focuses on tracing trade-offs to

architectural decisions. It would be interesting to

extend PROBE to trace the multi-dimensional

separation and trade-offs to detailed design and

implementation.

8. Conclusions

This paper has proposed a multi-dimensional

approach to separation of concerns in requirements

engineering as well as trade-off analysis of the

requirements specification from such a multi-

dimensional perspective. We focus on removing the

notion of a fixed functional base with respect to which

trade-offs among non-functional concerns are

traditionally observed, analysed and resolved; this

leads to an architecture that is misaligned with the

initial system requirements as the architecture choices

that would have otherwise been driven by functional

requirements and their associated trade-offs are largely

ignored. The proposed multi-dimensional approach

addresses this misalignment by treating all concerns,

whether functional or non-functional, as peers. This

provides the requirements engineer with an

opportunity to analyse the influence of crosscutting

functional properties on other requirements in the

system. It also facilitates analysis of trade-offs arising

from this and negotiation amongst stakeholders.

One of the key elements of the approach is the

notion of a meta concern space, a catalogue of typical

concerns, functional and non-functional, that manifest

themselves time and again in various software systems.

The abstract concern definitions in this meta concern

space are used as a basis to delineate requirements into

concrete concerns. Another novel aspect of the work is

the notion of a compositional intersection which

significantly limits the potential number of concerns to

be used as a base to observe trade-offs between two

concerns. This is crucial as the compositional

intersection allows us to limit this number without

compromising the rigour of the trade-off analysis.

The trade-off analysis and stakeholder negotiation

supported by our approach is based on a simple yet

natural separation of concerns. This offers a powerful

mechanism to identify influences of the various

concerns in the system in a multi-dimensional fashion.

This, in turn, supports better understanding of both

crosscutting functional and non-functional

requirements. The early, multi-dimensional trade-off

analysis provides the requirements engineers with

insights into problematic interactions amongst

concerns as well as the cumulative effect of multiple

concerns on a single concern in the system. These can

then be discussed and resolved with stakeholders

before the architecture is derived. This provides an

opportunity to remedy some of the intricacies of

reaching an optimal architecture choice. Even so, each

concern in our multi-dimensional separation still has a

number of architectural choices (of varying degrees of

suitability) to satisfy its requirements. We can choose

the most suitable architectural choice for each concern

but further trade-offs must be made as the various

choices pull the architecture in their respective

directions. The optimal architecture is the one that

involves architectural choices satisfying each concern

in the multi-dimensional separation within some

acceptable limits. These limits are derived from

discussion with stakeholders during requirements level

trade-off analysis and subsequent negotiations. This

provides effective traceability of trade-offs and

decisions from the requirements level to the

architecture.

The multi-dimensional approach presented in this

paper is a key stepping stone towards more rigorous

analysis of requirements. To date, requirements

engineering approaches have remained largely two-

dimensional in their approach to such analysis. Our

future work will focus on further case studies to

validate the multi-dimensional approach in structuring

and analysing requirements in a variety of systems and

domains. We are also interested in exploring the use of

fuzzy logic for trade-off analysis based on the weights

we may give to concerns. This could help us identify a

process to rank concerns by degree of importance in a

system and use the result as a basis for incremental

development.

Acknowledgements: This work is supported by

EPSRC Grant MULDRE (EP/C003330/1) and

Portuguese FCT Grant SOFTAS

(POSI/EIA/60189/2004).

9. References

[1] E. Baniassad, S. Clarke, "Theme: An Approach for

Aspect-Oriented Analysis and Design", Proc ICSE

2004.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

[2] L. Chung, et al., Non-Functional Requirements in

Software Engineering: Kluwer, 2000.

[3] A. Dardenne, A. Lamsweerde, and S. Fickas, "Goal-

directed Requirements Acquisition", Science of

Computer Programming, Vol. 20, pp. 3-50, 1993.

[4] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat,

"Using and Determining Location in a Context-

Sensitive Tour Guide", IEEE Computer, 34(8), pp. 35-

41, 2001.

[5] T. Elrad, R. Filman, A. Bader (eds.), "Theme Section on

Aspect-Oriented Programming", CACM, 44(10), 2001.

[6] A. Finkelstein, I. Sommerville, "The Viewpoints FAQ."

BCS/IEE Software Engineering Journal, 11(1), 1996.

[7] J. Grundy, "Aspect-Oriented Requirements Engineering

for Component-based Software Systems", 4th IEEE Int'l

Symp. on RE, 1999, IEEE CS Press, pp. 84-91.

[8] M. Jackson, Problem Frames: Analyzing and

Structuring Software Development Problems: Addison

Wesley, 2000.

[9] I. Jacobson, Object-Oriented Software Engineering - a

Use Case Driven Approach: Addison-Wesley, 1992.

[10] S. Katz, A. Rashid, "From Aspectual Requirements to

Proof Obligations for Aspect-Oriented Systems", Proc.

RE, 2004, IEEE CS Press, pp. 43-52.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.

Lipson, and J. Carriere, "The Architecture Tradeoff

Analysis Method", Int'l Conf. Engg. Complex Computer

Systems (ICECCS), 1998, IEEE CS Press, pp. 68-78.

[12] A. Lamsweerde, "Goal-Oriented Requirements

Engineering: A Guided Tour", 5th Int'l Symp. on RE,

2001, IEEE CS Press, pp. 249-261.

[13] A. Moreira, J. Araújo, and I. Brito, "Crosscutting

Quality Attributes for Requirements Engineering", Proc.

SEKE, 2002, ACM, pp. 167-174.

[14] A. Moreira, J. Araújo, A. Rashid "A Concern-Oriented

Requirements Engineering Model", Proc. CAiSE 2005,

LNCS, Vol. 3520, pp 293-308.

[15] A. Rashid, A. Moreira, J. Araújo, "Modularisation and

Composition of Aspectual Requirements", Proc. AOSD,

2003, ACM, pp. 11-20.

[16] A. Rashid, P. Sawyer, "Aspect-Orientation and

Database Systems: An Effective Customisation

Approach", IEE Proceedings - Software, 148(5), pp.

156-164, 2001.

[17] A. Rashid, P. Sawyer, A. Moreira, J. Araújo, "Early

Aspects: A Model for Aspect-Oriented Requirements

Engineering", Proc. RE, 2002, IEEE CS Press, pp. 199-

202.

[18] I. Sommerville, P. Sawyer, Requirements Engineering -

A Good Practice Guide: John Wiley and Sons, 1997.

[19] S. M. Sutton, I. Rouvellou, "Modeling of Software

Concerns in Cosmos", Proc. AOSD, 2002, ACM, pp.

127-133.

[20] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton,

"N Degrees of Separation: Multi-Dimensional

Separation of Concerns", Proc. ICSE, 1999, ACM, pp.

107-119.

[21] E. Yu, "Modelling Strategic Relationships for Process

Reengineering": PhD Thesis, University of Toronto,

1995.

[22] Y. Yu, et al., "From Goals to Aspects: Discovering

Aspects from Requirements Goal Models", Proc. RE

2004, IEEE CS Press, pp. 38-47.

Proceedings of the 2005 13th IEEE International Conference on Requirements Engineering (RE’05)
0-7695-2425-7/05 $20.00 © 2005 IEEE

