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Abstract 

Existing requirements engineering approaches 

manage broadly scoped requirements and constraints 

in a fashion that is largely two-dimensional, where 

functional requirements serve as the base 

decomposition with non-functional requirements 

cutting across them. Therefore, crosscutting functional 

requirements are not effectively handled. This in turn 

leads to architecture trade-offs being mainly guided by 

the non-functional requirements, so that the system 

quality attributes can be satisfied. 

In this paper, we propose a uniform treatment of 

concerns at the requirements engineering level, 

regardless of their functional, non-functional or 

crosscutting nature. Our approach is based on the 

observation that concerns in a system are, in fact, a 

subset, and concrete realisations, of abstract concerns 

in a meta concern space. One can delineate 

requirements according to these abstract concerns to 

derive more system-specific, concrete concerns. We 

introduce the notion of a compositional intersection, 

which allows us to choose appropriate sets of concerns 

in our multi-dimensional separation as a basis to 

observe trade-offs among other concerns. This 

provides a rigorous analysis of requirements-level 

trade-offs as well as important insights into various 

architectural choices available to satisfy a particular 

functional or non-functional concern. 

1. Introduction 

An effective requirements engineering (RE) 

approach must reconcile the need to achieve separation 

of concerns with the need to satisfy broadly scoped 

requirements and constraints. Viewpoints [6], use 

cases [9] and goals [12] offer means of partitioning 

requirements as a set of partial specifications that aid 

traceability and consistency management. However, 

ensuring the consistency of these partial specifications 

with global requirements and constraints is largely 

unsupported. 

Some RE approaches have explicitly focused on 

separation of broadly scoped properties, e.g., [1, 12, 

15, 17, 18, 22]. However, such separation is largely 

two-dimensional. Functional requirements, separated 

using mechanisms such as viewpoints, use cases or 

themes, serve as the base decomposition with analysis 

conducted against a set of non-functional requirements 

or overall system goals or behaviour that cut across the 

base. It has been argued that crosscutting is a 

phenomenon that is not limited to non-functional 

requirements and that functional requirements can also 

often cut across parts of a system [16]. Existing 

separation of concerns mechanisms at the RE level do 

not explicitly account for such crosscutting nature of 

functional requirements. Consequently, they cannot be 

handled effectively leading to a lack of identification 

and characterisation of their influence on other 

concerns in the system. Furthermore, this leads to 

architecture quality analyses being dominantly driven 

by non-functional requirements and their associated 

trade-offs. The influence of functional requirements 

and their associated trade-offs on architectural quality 

is largely ignored. 

In this paper, we propose that requirements should 

be decomposed in a uniform fashion regardless of their 

functional or non-functional nature. This makes it 

possible to project any particular set of requirements 

on a range of other requirements, hence supporting a 

multi-dimensional separation. The key characteristics 

of our approach include: 

the definition of a meta concern space from where 

concrete system-specific concerns can be derived 

based on the specific features of the problem 

domain; 

the notion of a compositional intersection which 

makes it possible to identify suitable sets of 

concerns in our multi-dimensional separation as a 

basis to observe trade-offs among other concerns;  
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use our early trade-off analyses to provide insights 

into the architecture choices suited to each 

concern hence, facilitating alignment of the 

derived architecture with the requirements’ 

intentions. 

Section 2 discusses existing approaches to separate 

crosscutting concerns at the RE level and highlights 

how these suffer from the tyranny of dominant 

decomposition [20]. Section 3 introduces our approach 

for multi-dimensional separation of requirements level 

concerns and a context sensitive tourist guide used to 

demonstrate our approach. Section 4 discusses the 

notion of the meta concern space and its use in the 

delineation of system requirements into concrete 

concerns. Section 5 focuses on specification of 

composition rules for each concern as well as 

compositional intersections to identify potential trade-

off points for subsequent analysis. Section 6 provides 

insights into the initial architecture choices, resulting 

from the trade-offs, to satisfy each concern. Section 7 

discusses some related work, while section 8 concludes 

the paper and identifies directions for future work. 

2. Background and motivation 

Separation of concerns has been contemplated by 

well-known requirements engineering approaches such 

as goal-oriented techniques and viewpoints. In goal-

oriented approaches [12], such as KAOS [3] and i* 

[21], a goal is an objective that the system under 

consideration should achieve. It can be formulated at 

different levels of abstraction and covers concerns in 

two dimensions, i.e., functional and non-functional. 

KAOS uses a formal language (first-order temporal 

logic with real-time constraints) to specify critical parts 

of the system, besides allowing informal modelling. 

Goals are used to detect and manage conflicts among 

requirements. The i* framework identifies and models 

organisational requirements and adopts the goal and 

softgoal modelling concepts as its dimensions. A 

softgoal represents a non-functional requirement we 

expect to satisfy within acceptable limits. 

Separation of crosscutting properties has also been 

considered in PREView [18], a viewpoint-oriented 

requirements engineering method. A PREView 

viewpoint encapsulates partial information about the 

system. Requirements are organised in terms of several 

viewpoints, and analysis is conducted against a set of 

concerns intended to correspond broadly to the overall 

system goals. In applications of the method, the 

concerns that are identified are typically high-level 

non-functional requirements. Here again the separation 

of concerns is two-dimensional: one being the 

viewpoints that handle functional requirements and the 

PREView-specific notion of concerns which 

encapsulate non-functional properties. 

The Aspect-Oriented Requirements Engineering 

(AORE) model we presented in [17] is based on 

treating PREView concerns as adaptations of the 

aspect-oriented programming [5] notion of aspects 

and, consequently, carries out the analysis of broadly 

scoped properties against a base set of viewpoints. A 

refinement of the model presented in [15] supports 

separation of the specification of aspectual 

requirements, non-aspectual requirements and 

composition rules in modules representing coherent 

abstractions and following well-defined templates. The 

modularisation makes it possible to establish early 

trade-offs between aspectual requirements hence 

providing support for negotiation and subsequent 

decision-making among stakeholders. However, the 

composition rules have to be written with reference to 

a dominant decomposition that aspects cut across.  

In Theme/Doc [1] analysis is carried out by first 

identifying a set of actions in the requirements list 

which are, in turn, used to identify crosscutting 

behaviours. A theme is a collection of structures and 

behaviours that represent one feature. While 

Theme/Doc treats all concerns as themes, there is still 

the notion of base themes and crosscutting themes 

hence diluting the uniformity of the model with a 

strong base-aspect dichotomy. 

The discussion above demonstrates that, while 

existing RE approaches support analyses of system 

requirements from the perspective of non-functional 

properties, support for identifying the influence of 

crosscutting functional properties (or a combination of 

functional and non-functional properties) is not 

available. Nor is there any support for incorporating 

such an influence during trade-off analysis, the 

subsequent negotiation among stakeholders and the 

derivation of an architecture design based on the 

combination of the possible choices for each concern.  

The multi-dimensional approach presented in this 

paper addresses the above issues by eliminating the 

dominant decomposition through uniform treatment of 

the various types of concerns in the system. In deriving 

our multi-dimensional approach we have built on the 

strengths of the model in [15], mainly the informal 

composition rules with concern-specific actions and 

operators.  

In [14] we proposed a model for multi-dimentional 

separation of concerns at the RE level. This paper adds 

to the model by defining a meta concern space, by 

adding the notion of a compositional intersection 

which helps to identify suitable sets of concerns in our 

multi-dimensional separation as a basis to observe 

trade-offs among other concerns, and by using our 
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early trade-off analyses to provide insights into the 

architecture choices suited to each concern. 

3. Multi-dimensional separation of 
concerns in RE 

Concerns in our multi-dimensional approach imply 

any coherent collection of requirements. We treat all 

concerns in a uniform fashion and hence, do not 

classify concerns into viewpoints, use cases or aspects 

though our concerns still encapsulate coherent sets of 

functional and non-functional requirements. We 

perceive the concern space at the requirements level as 

a hypercube. Figure 1 shows a simplified 

representation of this as a cube. Each face of the 

hypercube represents a particular concern of interest. 

By treating all concerns as equal we can choose any set 

of concerns as a base to project the influence of 

another concern or set of concerns onto this base. The 

block arrows represent projections. This flexible, 

multi-dimensional view makes it possible to handle 

both crosscutting functional and non-functional 

requirements in an effective fashion. We observe later, 

in Section 6, that the chosen architecture lies 

somewhere in the area bounded by the hypercube 

walls. 

Figure 1. Hypercube representing concerns in a 
system  

3.1. Running example 

In order to illustrate the various concepts and 

techniques, we use a case study based on a location 

and context sensitive tourist guide system developed at 

Lancaster [4]. The system has the following key 

characteristics: 

“It provides an electronic hand-held guide that 

offers the following facilities to the visitors: (1) 

retrieve information about the city, including 

information about their current location; (2) provide 

route guidance to help visitors move between locations 

on the tour; (3) enter a set of preferences and interests 

to generate suitable tours of the city; (4) access 

external services, such as hotel and theatre ticket 

reservations.”

The various requirements-level concerns in this 

particular system and their categorisation based on our 

meta concern space is described next. This is followed 

by a discussion of our concern composition and trade-

off analysis mechanisms.

4. Meta concern space and system space 

When developing our multi-dimensional approach 

to RE, we have taken into account the fact that most 

requirements engineers, and developers in general for 

that matter, are used to thinking in two-dimensional 

terms. A shift from such a two-dimensional 

perspective on requirements engineering to a fully 

multi-dimensional view poses a significant cognitive 

challenge. Furthermore, requirements engineers and 

developers often still find it a non-trivial task to 

identify and categorise requirements using well-

established mechanisms such as viewpoints and use 

cases. So it is even more crucial to facilitate 

identification of concerns that would form suitable 

candidates for providing a multi-dimensional view and 

subsequent analysis of such a view. 

Concern identification in our approach is based on 

the observation that certain concerns, both functional 

and non-functional, appear time and again during 

system development. A catalogue of non-functional 

concerns has been provided by [2] but we extend the 

notion of such a catalogue to typical functional 

concerns. Examples of such repeatedly appearing 

concerns include registration, ordering, billing, 

booking, mobility, availability and security (note that 

the examples include both functional and non-

functional concerns). Based on this observation, we 

divide the requirements space into two separate spaces 

(cf. Figure 2): 

System space, which comprises of the various 

types of systems developers want to realise. 

Meta concern space, which comprises of the above 

mentioned abstract set of typical concerns 

(functional and non-functional), which repeatedly 

manifest themselves in various systems. 

Each system in the system space has a number of 

desirable features. These lead to establishment of the 

requirements (gray dots in Figure 2), through 

interviews, ethnographic studies, analysis of business 

practices, etc., of the system to be developed (depicted 

by the solid arrows in Figure 2). Once the requirements 

have been derived from desirable system features, we 

categorise them into concerns from the meta concern 

space (shown by dashed arrows in Figure 2). This 
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leads to concrete, system- and domain-specific 

definitions (ovals in Figure 2) of the abstract concerns 

and can be achieved iteratively and incrementally, by 

handling a small set of concerns at a time. Note that 

not all concerns in the meta concern space are 

necessarily used during this categorisation; mostly 

only a subset of concerns relevant to the problem 

domain is needed. The categorisation of requirements 

into concrete concerns leads to creation of a 

relationship between the meta concern space and the 

system space (shown by the gray arrow in Figure 2). 

This creates a conceptual binding between the abstract 

representations of concerns in the meta concern space 

with their concrete representations in the system space. 

Meta Concern

Space

System

Space

Requirements

Figure 2. The system space and meta concern space 

From the outline specification of our tourist guide 

case study, we can identify several concerns from the 

meta concern space manifesting themselves. For 

example, the visitors access information while moving 

between locations so Information Retrieval and 

Mobility are two concerns of interest. The system also 

interacts with external reservation services so 

compatibility is also a concern. Other concerns are 

more clearly visible in the detailed system descriptions, 

notes of discussions and interviews with stakeholders 

as well as domain knowledge of experts in designing 

mobile interactive systems. Consequently, the concrete 

concerns (from the catalogue of abstract concerns in 

the meta concern space) we have identified for our 

mobile tourist guide case study are: 

Authentication: to check personal information 

against a valid ID before loaning the mobile 

device to a visitor. 

Availability: to ensure that the system is always 

reactive to stimuli. 

Compatibility: to ensure interaction with external 

services such as hotel and ticket reservation. 

Connectivity: to provide network connections to 

access external services. 

Context: to recognise the change in location as a 

visitor moves around the city. 

Customisability: to allow the visitor to configure 

the tours to their personal preferences and 

interests. 

Information Retrieval: to obtain information (e.g., 

by visitors or the tourist information centre staff) 

from the system. 

Information Update: to add, remove or update 

information about the various sites of interest to 

tourists. 

Mobility: to ensure that visitors can access the 

system while on the move. 

Navigation: to provide directions for a visitor to 

follow a tour. 

Portability: to provide lightweight devices for 

accessing the system. 

Registration: to obtain personal information from 

visitors before loaning out the electronic devices 

for accessing the system. 

Cost: to account for costs (e.g., development, 

equipment, deployment, operation maintenance). 

For the concrete realisation of our approach, we 

have chosen to represent both the abstract concerns in 

the meta concern space as well as their concrete 

realisations using well-defined templates based on the 

eXtensible Markup Language (XML). Such a semi-

structured representation of the concerns makes it 

possible for us to define composition rules specifying 

how a concern constrains or influences the 

requirements in other concerns (cf. section 5). It also 

makes it possible to analyse the concerns and their 

compositions for establishment of potential trade-off 

points. A similar XML-based approach effectively 

facilitated partial automation of the requirements 

analysis in our earlier work on the Aspectual 

Requirements Composition and Decision Support tool, 

ARCADE [15]. In fact, our composition rules build 

upon the composition operators and actions developed 

as part of this earlier work (cf. section 5).  

Throughout the paper we will be using the concerns 

Information Retrieval and Mobility from our tourist 

guide case study to illustrate our approach. Figures 3 

and 4 show the abstract definitions of these concerns in 

the meta concern space. The abstract definitions are 

enclosed in <MetaConcern> </MetaConcern> tags, 

which also specify the name of the concern in the meta 

concern space. The definition also includes a brief 

description of the concern, some typical examples of 

use derived from past experience and domain 

knowledge and the (meta) concerns it might relate to or 

interact with (these concern names are enclosed in the 

<Relationships> </Relationships> tags). Note that the 

relationships information is provided as a helpful guide 

and may not hold for all systems and, in several cases, 
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there might be additional relationships with other 

concerns in a system. 

<?xml version="1.0" ?>
- <MetaConcern name="InformationRetrieval">

<Description>The operation of accessing information from a  
computer system </Description>

<Examples>Database retrieval, Multimedia retrieval</Examples>
  <Relationships> Availability, Mobility, InformationUpdate

</Relationships>
</MetaConcern>

Figure 3. InformationRetrieval meta concern in 
XML 

<?xml version="1.0" ?>
- <MetaConcern name="Mobility">

<Description>The quality of moving freely </Description>
<Examples>Wireless networks, Mobile phones, Context aware  

systems </Examples>
  <Relationships> Availability, Portability, Context </Relationships>

</MetaConcern>

Figure 4. Mobility meta concern in XML 

Figures 5 and 6 show the XML specifications of the 

concrete concerns InformationRetrieval and Mobility 

in our mobile tourist guide. A Concern tag denotes the 

start of a concern while a Requirement tag denotes the 

start of a requirement. Refinements such as sub-

requirements are represented via the nesting of the 

tags. Each requirement has an id which is unique 

within its defining scope, i.e., the concern. Concern 

names are unique within the case study. However, 

XML namespaces can also be used to realise naming 

scopes. 

<?xml version="1.0" ?>
- <Concern name="InformationRetrieval">

- <Requirement id="1">
It should be possible to retrieve information from the system. 
<Requirement id="1.1">It should be possible to access  

information about the attractions. </Requirement>
<Requirement id="1.2">It should be possible to access  

information about the current location. </Requirement>
</Requirement>
<Requirement id="1.3">It should be possible to obtain a list of  

available preset tours. </Requirement>
</Concern>

Figure 5. InformationRetrival concern in XML 

<?xml version="1.0" ?>
- <Concern name="Mobility">

- <Requirement id="1">
The system will be accessed on the move. 
<Requirement id="1.1">The system will be accessed from within 

a limited area. </Requirement>
</Requirement>

</Concern>

Figure 6. Mobility concern in XML 

5. Composition and trade-off analysis 

Having categorised the various requirements of the 

system into concrete concerns from our meta concern 

space, we move onto defining composition rules for 

each concern. This is followed by choosing specific 

sets of concerns, in a methodical fashion, as base to 

observe trade-offs among other concerns. 

5.1. Composition specification 

The potential relationships that a concern might 

bear with other concerns are documented in our 

abstract concern definitions in the meta concern space. 

These relationships might not hold in case of all 

systems and in some cases additional relationships 

with other concerns might arise. However, they still 

provide a good starting point for a requirements 

engineer to start specifying how a concern constrains 

or influences requirements in other concerns it relates 

to. In other words, our composition specification, 

provided in the form of composition rules, describes 

how a concern cuts across other concerns in our multi-

dimensional separation. 

Composition rules define the relationships between 

concerns requirements at a fine granularity. Like our 

concern definitions, we have an XML-based 

composition specification language to specify the 

composition rules. Note that composition rule 

definitions can be governed by an XML schema. 

However, for simplification we describe the structure 

of composition rules with reference to some examples 

and not the XML schema definition. As shown in 

figures 7 and 8, a coherent set of composition rules is 

encapsulated in a Composition tag. Figure 7 

encapsulates all compositions for InformationRetrieval 

while Figure 8 does so for Mobility. The semantics of 

the Requirement tag here differ from the tags in the 

concern definition. The concern to which a 

requirement belongs is explicitly listed as an attribute; 

this is essential for scoping purposes. If a concern 

requirement has any sub-requirements these must be 

explicitly excluded or included. This is done by 

providing an “include” or “exclude” value for the 

optional children attribute. A value of “all” for the id

attribute in a Requirement tag implies that all the 

requirements within the specified concern are to be 

constrained. 

The Constraint tag defines an, often concern-

specific, action and operator defining how the 

requirements from one concern constrain those in a set 

of other concerns. Although the actions and operators 

are informal, they have clearly defined meaning and 

semantics to ensure valid composition of concerns. 

This provides the architects and designers a systematic 

means to interpret the requirements specification. The 

Outcome tag defines the result of constraining the 

concern requirements. The action value describes 

whether another concern requirement or a set of 
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concern requirements must be satisfied or merely the 

constraint specified has to be fulfilled. 

The informality of the actions and operators ensures 

that the composition specification is still readable by 

the stakeholders, an important consideration during 

requirements engineering. For example, if we look at 

the first composition rule in Figure 7 and focus on the 

values in bold we get the following: “Information 
Retrieval must be provided during all the 
Customisability requirements, requirement 1 of

Navigation and requirement 1 of Mobility, including 

its children, with the outcome that the specified 

constraint is fulfilled”. The second part of the 

composition rule should be interpreted in a similar 

fashion. 

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="InformationRetrieval" id="all">
- <Constraint action="provide" operator="during">

<Requirement concern="Customisability" id="all" />
<Requirement concern="Navigation" id="1" />
<Requirement concern="Mobility" id="1" children="include" />
<Requirement concern="InformationUpdate" id="all" />

</Constraint>
<Outcome action="fulfilled" />

</Requirement>
</Composition>

Figure 7. Composition rule for InformationRetrieval

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Mobility" id="all">
- <Constraint action="affect" operator="on">

<Requirement concern="Availability" id="all" />
<Requirement concern="Connectivity" id="all" />
<Requirement concern="Context" id="all" />
<Requirement concern="Navigation" id="1" />
<Requirement concern="InformationRetrieval" id="all" />

</Constraint>
<Outcome action="fulfilled" />

</Requirement>
</Composition>

Figure 8. Composition rule for Mobility

Composition rules in the multi-dimensional 

approach have been inspired by our earlier work on 

composition of aspectual requirements during 

viewpoint-oriented requirements engineering [15]. The 

key difference is that a concern constrains other 

concerns and not only viewpoints. 

Tables 1, 2 and 3 describe the semantics of the 

actions and operators for Constraint and Outcome, 

including those used in the composition rules shown in 

figures 7, 8. 

The interesting point to note here is that not all 

operators are concern-specific, e.g., XOR is a generic 

operator. Also, the actions for the Outcome are generic 

and not specific to a particular concern. It is, however, 

not possible to say whether Outcome actions are 

always generic, as more case studies need to be carried 

out before arriving at such a conclusion. It is also 

worth noting that although the same operator might 

apply to different concern requirements, not all 

operator-action combinations are valid in the 

Constraint specification for a particular concern. We 

have validated these in other case studies previously, 

e.g., [15], and aim to continue validation with further 

case studies. 

Table 1. Description of Constraint actions 

 Constraint Action 

Type Description 

enforce Used to impose an additional condition over a set of 

concern requirements. 

ensure Used to assert that a condition that should exist for a set 

of concern requirements actually exists. 

provide Used to specify additional features to be incorporated for 

a set of concern requirements.  

applied Used to describe rules that apply to a set of concern 

requirements and might alter their outcome. 

exclude Used to exclude some concerns or requirements if the 

value all is specified. 

affect Used to specify that a set of concern requirements will 

alter the state of another concern. 

Table 2. Description of Constraint operators 

 Constraint Operator 

Type Description 

during Describes the temporal interval during which a set of 

requirements is being satisfied. 

between Describes the temporal interval falling between the 

satisfaction of two requirements. The interval starts when 

the first requirement is satisfied and ends when the second

one is to start being satisfied. 

on Describes the temporal point after a set of requirements 

has been satisfied. 

for Describes that additional features will complement the 

concern requirements. 

with Describes that a condition will hold for two sets of 

requirements with respect to each other. 

in Describes that a condition will hold for a set of 

requirements that has been satisfied. 

AND, OR, 

XOR
Conjunction, disjunction and exclusive-OR (when either 

requirement is satisfied but not both) 

Table 3. Description of Outcome actions 

Outcome Action 

Type Description 

satisfied Used to assert that a set of viewpoint requirements will 

be satisfied after the constraints of a concern 

requirement have been applied. 

fulfilled Used to assert that the constraints of a concern 

requirement have been successfully imposed. 
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5.2. Compositional intersection 

In order to identify trade-off points, one needs to 

observe the interactions of a concern with other 

concerns with reference to some base. This is quite 

straightforward in two-dimensional approaches to 

separation of concerns in RE, e.g., PREView [18], the 

NFR Framework [2] and our earlier work on aspect-

oriented requirements engineering [15, 17]. In all these 

approaches, functional requirements provide a preset 

base for observing interactions among the non-

functional concerns in order to identify potential trade-

off points. Such a preset base is not readily available in 

our multi-dimensional separation as all concerns are 

peers and a particular type of concerns does not 

dominate those of another. 

We can see from the composition rules examples in 

section 5.1 that functional requirements (e.g., 

InformationRetrieval) can also constrain or influence 

requirements within non-functional concerns in our 

multi-dimensional separation. Therefore, the trade-off 

analysis also must be multi-dimensional in nature. The 

brute force method of doing this would be to choose 

every possible combination of concerns as a basis to 

study interactions among two concerns and then 

synthesising the results of such an analysis. However, 

this poses a significant overhead, even in the presence 

of tool support, as the number of potential 

combinations of concerns to be used as a base would 

be extremely high. We, therefore, introduce the notion 

of a compositional intersection (denoted by “ ”) to 

constrain the potential combinations of concerns to be 

used as a base to those combinations that have real 

value to offer in terms of requirements-level trade-off 

analysis. 

Let C1, C2, C3, …, Cn be the concrete concerns in 

our system requirements and Sc1, Sc2, Sc3, …, Scn be 

the sets of concerns that each of them cuts across 

respectively. Let us suppose we want to identify the 

trade-offs (if any) between C1 and C2. In order to do 

this we should take the compositional intersection of 

Sc1 and Sc2. However, note that a compositional 

intersection is not a simple intersection as in set theory. 

Let Ca be a member of both Sc1 and Sc2. Ca will appear 

in the compositional intersection iff both C1 and C2

influence/constrain the same or overlapping set of 

requirements in Ca. That is, if C1 and C2 influence 

disjoint sets then Ca will not be in the compositional 

intersection.  

If the result of the compositional intersection is a 

non-empty set, we need to analyse the trade-offs and 

specify any priorities. The process is repeated for C1

and C3 and so on until C1 and Cn. It is then repeated for 

C2 but, obviously, the compositional intersection for C2

and C1 does not need to be repeated since it has 

already been carried out when identifying trade-off 

points for C1. The process continues to be repeated for 

all concerns up to Cn. This means that the maximum 

number of compositional intersections we have to take 

is given by:   

!2)!*2(

!2

n

n
Cn

where n is the number of concerns.  

Let us consider a requirements specification with n

concerns where the set of concerns each concern cuts 

across is given by SC1={C2, C5, C7, Cn}, SC2 = {C5, C6,

Cn} and SCn = {C1, C2, C9}. The remaining concerns do 

not cut across any other concern. Let us represent the 

compositional intersection set between concerns Ci and 

Cj as SCi SCj. The list of possible compositional 

intersection sets will be: 

SC1 SC2 = {C5, Cn}

SC1  SCn = {C2}

SC2 SCn = 
This illustrates that the number of compositional 

intersections is likely to be smaller than the 

combinatorial number, since some concerns may not 

affect, i.e., be related to, many other concerns. 

For our tourist guide example, if SInformationRetrieval = 

{Customisability, Mobility, InformationUpdate, 

Navigation} denotes the set of concerns that 

InformationRetrival cuts across and SMobility = 

{Availability, Connectivity, Context, Navigation, 

InformationRetrieval} denotes a similar set for 

Mobility, the compositional intersection is given by 

SInformationReteriaval SMobility = {Navigation} since both 

composition rules affect requirement 1 of Navigation. 

The compositional intersections provide us with the 

trade-off points for our trade-off analysis. 

5.3. Trade-off analysis 

Trade-offs are analysed based on the type of 

contribution one concern may have on another with 

respect to the base identified via the compositional 

intersection. These contributions may be positive, 

negative or “none”.  

Firstly, we build a contribution matrix (cf. Table 4) 

where each concern may contribute negatively (-) or 

positively (+) to the others (empty cells represent 

“don’t care” contributions). Each cell shows the type 

of contribution (“-“ or “+”) and also the compositional 

intersection set used to find the contribution. If there is 

no contribution in one of the directions of the 

relationship, then the cell only shows the 

compositional intersection. Empty cells denote the 

inexistence of a relationship. Therefore, the 
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relationships represented in Table 4 are bi-directional, 

meaning that we should analyse the relationship in 

both directions, with respect to the same base. For 

example, C1 contributes positively to C2 with respect to 

C5 and Cn while C2 contributes negatively to C1 with 

respect to C5 and Cn. The “composed contribution” is 

negative. This means that the direction of the 

contribution relationship is important. 

The decision about the type of contribution for each 

particular case is usually difficult to make, especially if 

the base is a set with several concerns. We may look 

for inspiration in existing catalogues, such as [2] as 

well as experimental and empirical domain knowledge. 

Table 4. Contributions between concerns 

C1 C2 … Cn

C1 {C5,Cn} {C2}

C2 {C5,Cn}    

…      

Cn {C2}   

Table 5 depicts the contributions between some of 

the concerns that compose our tourist guide example. 

Table 5. Part of the contribution matrix for the guiding system 
(Cont: Context; Cust: customisability; IU: Information Update; Mob: Mobility; Nav: Navigability) 

Availability Information Retrieval Mobility ... 

Availability {Cust, Nav, Mob, IU} {Cont, Nav}  

Information Retrieval {Cust, Nav, Mob, IU} {Nav}  

Mobility {Cont, Nav} {Nav}
…     

Focusing our attention on the trade-offs between 

InformationRetrieval and Mobility concerns, we must 

study the contribution between them with respect to 

the base composed of Navigation. Mobility contributes 

negatively to InformationRetrieval with respect to 

Navigation. This means that the more a visitor moves, 

the more difficulties s/he will have to retrieve 

information from the system. The contribution in the 

opposite direction is also negative, since the more 

complex the information needed is, the less mobile the 

system may be, as wireless networks have limited 

bandwidth.  

Having identified the trade-off points, from a 

multidimensional perspective, we must now study the 

cumulative effect of a set of concerns on a given 

concern. Let P1 be the set of concerns that contribute 

positively or negatively to C1. We can project these 

influences on to C1 to see how the positive or negative 

contributions affect C1. We repeat the process for all 

the concerns up to Cn.

This process can be better illustrated by folding 

each successive column on one another, to obtain the 

cumulative effect for situations where several concerns 

directly influence a specific one (see Figure 9). Given 

that the concerns are repeated in the columns and rows, 

the cumulative effect can be observed in both 

directions, e.g., from Availability to 

InformationRetrieval and from InformationRetrieval to 

Availability. This folding provides us the cumulative 

projections: the combined influence of a set of 

concerns on a particular concern. 

Availability

InformationRetrieval

. . .

Mobility

Mobility
Availability

InformationRetrieval

{Cust, Nav, Mob, IU}
-{Cont, Nav}

{Cust, Nav, Mob, IU}

-
{Nav}

{Cont, Nav}
-{Nav}

. .
.

Figure 9. Contribution table folded along its 
columns 

For example, the cumulative effect of 

InformationRetrieval and Mobility on Availability is 

positive and, therefore, no trade-off is necessary. On 

the other hand, the cumulative effect of Availability 

and InformationRetrieval on Mobility is negative. 

Therefore, a trade-off must be made in order to handle 

this conflicting situation. In [15] we have proposed a 

possible solution. The main ideas are still useful in a 

multidimensional approach. The solution proposed is 

to attribute weights to those concerns that contribute 

negatively to each other in relation to a particular base 

(the base in [15] was a set of viewpoints, as mentioned 

previously). Each weight is a real number in the 
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interval [0 .. 1] and represents the priority of a concern 

in relation to the concern it is projected on. These 

values are given according to the importance each 

concern has with respect to another one. The scales we 

are using are based on ideas from fuzzy logic and have 

the following meaning:  

Very important takes values in the interval ] 0,8 .. 

1,0] 

Important takes values in the interval ] 0,5 .. 0,8] 

Average takes values in the interval ] 0,3 .. 0,5] 

Not so important takes values in the interval ] 0,1 .. 

0,3] 

Do not care much takes values in the interval [0 .. 

0,1] 

Using fuzzy values (very important, important, not 

so important, etc) facilitates the stakeholders’ task of 

attributing priorities to conflicting concerns. The major 

problem occurs when the two concerns involved in the 

conflict have the same priority. In this case a decision 

must be taken by the stakeholders to lower one of the 

priorities.  

Conflict resolution might lead to a revision of the 

requirements specification (concerns and/or 

composition rules). If this happens, then the 

projections are revised and any further conflicts arising 

are resolved. The cycle is repeated until all conflicts 

have been resolved through effective negotiations.

6. Architectural choices 

Now that we have undertaken trade-off analysis of 

our requirements level concerns, we are armed with a 

better understanding of them when making architecture 

choices. Before we discuss how these trade-offs 

identified at the requirements level pull our choice of 

architecture in various directions, it is important to 

note that each concern in the multi-dimensional 

separation leads to a number of architecture choices 

that would serve its needs with varying levels of 

stakeholder satisfaction (cf. Figure 10). The gray boxes 

in Figure 10 show the ideal or most suitable 

architectural choices for each concern. Note that these 

architectural choices are unlikely to be the same and 

could even be conflicting (which is often the case). 

Our trade-off analysis at the requirements level warns 

us about such potential conflicts and we can observe, 

and appreciate, them clearly when we start making 

architecture choices. This highlights the importance of 

the early trade-off analysis we carry out at the 

requirements level, as some of these conflicts are 

resolved early via stakeholder negotiations and 

prioritisation of concerns. 

Concern1

Concern2

Concernn

... 

Concerns Architecture Choices 

…

…

…

Figure 10. Architectural choices to satisfy each 
concern 

Returning to our tourist guide case study, the 

Availability concern can be satisfied by a number of 

architecture choices, e.g., via multiple replica servers, 

high integrity network links, or a combination of both 

these factors. At the same time, we can observe that 

the Mobility concern requires an architecture based on 

a wireless network so that visitors can walk around 

while accessing the information. This is at odds with 

the architectural needs for Availability (our 

requirements analysis already alerted us to the negative 

contribution between Mobility and Availability), as 

wireless networks tend to be less reliable than 

traditional wired networks. Maintaining Availability in 

a wireless network would require a small number of 

powerful wireless base stations in a restricted area. 

However, this would compromise Mobility, which 

aims to allow users to roam as freely as possible. 

We can observe similar situations for other 

concerns. Consider, for example, InformationRetrieval. 

The various architectural choices pertain to different 

kinds of media made available to the visitors. These 

could range from a simple text-based retrieval 

mechanism to multimedia retrieval involving 

photographs, graphic maps, animations, videos, etc. Of 

course, our ideal choice for information retrieval 

would be a fully-fledged multimedia solution. 

However, we observed in section 5.3 that Mobility and 

InformationRetrieval contribute negatively to each 

other. We also noted that this negative contribution 

was with reference to Navigation. If we look at our 

architectural choice for Mobility, this analysis makes 

sense. An extensive multimedia solution would help 

the visitor retrieve information that is more 

comprehensible and useful. At the same time, 

mechanisms such as graphic maps would help the 

visitor navigate more effectively. However, the 

bandwidth available over a wireless connection in a 

busy city centre is fairly limited (especially if there are 

fewer base stations deployed). This means we would 

need to compromise to a less elaborate multimedia 
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solution for information retrieval or accept that 

information retrieval may not always be possible, e.g., 

when the user drifts in and out of the range of a 

wireless base station.  

Cost is a concern that is likely to conflict with 

architectural choices for other concerns and often plays 

a major role in determining the final system 

architecture. In our tourist guide system, choices such 

as the number/variety of replica servers, the 

number/variety of wireless base stations, the amount of 

multimedia content developed, etc. are strongly 

influenced and constrained by Cost. From a Cost 

perspective the ideal architecture is the one that costs 

least but this is unlikely to be the optimal architecture 

to support other concerns. 

All these, often conflicting architectural choices 

pull our final architecture choice in various directions 

(cf. Figure 11). Our requirements-level trade-off 

analysis gives us some early insights into such a pull 

and helps us resolve some of the conflicts. However, it 

is when we make our architecture choice that we have 

to identify and maintain the optimal position for the 

architecture in the presence of such diverse and 

conflicting needs of concerns. 

Mobility

Availability

C
o

st

In
fo

rm
at

io
n

R
et

ri
ev

al

Architecture

Figure 11. Architectural pull of various concerns 

7. Related work 

There are other mechanisms that aim to support a 

uniform separation of concerns during requirements 

engineering. Problem frames [8] focus on the 

environment in which a system is located instead of the 

system itself or its interfaces. Problem frames are 

concerns and each one can be seen as a single-

dimension.  

The NFR framework [2] focuses on non-functional 

requirements. It does not explicitly deal with 

functional concerns, but establishes a link to them. 

Also, it does not take into account the crosscutting 

nature of those requirements. There are approaches 

that integrate functional and non-functional concerns 

[3], but, again, the crosscutting nature of those 

concerns is not addressed.  

Multi-dimensional separation of concerns is 

supported by Hyperspaces [20] and Cosmos [19]. The 

Hyperspaces approach employs hyperslices as a 

decomposition mechanism where concerns are 

organised according to multiple dimensions, where 

each dimension is partitioned by concerns of the same 

type (e.g., classes, functions). A hypermodule is a set 

of hyperslices together with a composition rule that 

specifies how the hyperslices are composed to form a 

more complex hyperslice. Our model can be seen as a 

specific instantiation of the hyperspaces model at the 

requirements level. Concerns in our model can be 

perceived as hyperslices while composition rules 

defining the projections can be seen as a specific 

instance of hypermodules. Cosmos is a concern-space 

modelling schema. Here a concern is any matter of 

interest in a system. A concern-space is an organised 

representation of concerns and their relationships. 

Similar to our work, Cosmos generalises the idea of a 

concern hyperspace (or hyperslice). It models concern-

spaces through concerns, relationships and predicates. 

Concerns are classified as logical (representing 

concepts) and physical (representing elements of 

software systems). Some of the concerns and 

relationships e.g., physical ones are not relevant at the 

requirements level. Moreover, the projections of 

concerns on other concerns are not truly achieved. 

Grundy proposes an aspect-oriented requirements 

engineering method targeted at component based 

software development [7]. The approach provides a 

categorisation of diverse aspects of a system that each 

component provides to end users or other components. 

A UML compliant approach to handle quality 

attributes (i.e. non-functional requirements) at the early 

stages of the development process is proposed in [13]. 

In both of these approaches, the separation of concerns 

is two-dimensional (i.e., functional and non-functional 

concerns (or aspects)). Moreover, the projections are 

limited from aspects to functional requirements. 

In [22], an approach is proposed for discovering 

aspects from relationships between goals. This is 

accomplished by using a goal model, where functional 

and non-functional requirements are represented 

through goals and softgoals, plus tasks that contribute 

to their satisfaction. The model is analysed in order to 

identify aspects. Our work, in contrast, takes a multi-

dimensional perspective by treating concerns and their 

trade-offs uniformly across requirements and 

architecture. This can be further mapped onto any 

design and implementation approach supporting multi-

dimensionality, e.g., [20]. 

In the Architecture Trade-off Analysis Method 

(ATAM) [11] various competing quality attributes and 

their interactions are characterised. This is achieved by 

building and maintaining both quantitative and 

qualitative models of these attributes. The models are 
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used as a basis to evaluate and evolve the architecture. 

The main focus of ATAM is on identifying the trade-

off points at the architecture level. The work described 

in this paper focuses on identifying conflicting 

concerns in a uniform fashion and establishing critical 

trade-offs before the architecture is derived.  

The PROBE framework [10] supports traceability 

of aspectual requirements and associated trade-offs to 

detailed design and implementation. Our multi-

dimensional approach focuses on tracing trade-offs to 

architectural decisions. It would be interesting to 

extend PROBE to trace the multi-dimensional 

separation and trade-offs to detailed design and 

implementation. 

8. Conclusions 

This paper has proposed a multi-dimensional 

approach to separation of concerns in requirements 

engineering as well as trade-off analysis of the 

requirements specification from such a multi-

dimensional perspective. We focus on removing the 

notion of a fixed functional base with respect to which 

trade-offs among non-functional concerns are 

traditionally observed, analysed and resolved; this 

leads to an architecture that is misaligned with the 

initial system requirements as the architecture choices 

that would have otherwise been driven by functional 

requirements and their associated trade-offs are largely 

ignored. The proposed multi-dimensional approach 

addresses this misalignment by treating all concerns, 

whether functional or non-functional, as peers. This 

provides the requirements engineer with an 

opportunity to analyse the influence of crosscutting 

functional properties on other requirements in the 

system. It also facilitates analysis of trade-offs arising 

from this and negotiation amongst stakeholders. 

One of the key elements of the approach is the 

notion of a meta concern space, a catalogue of typical 

concerns, functional and non-functional, that manifest 

themselves time and again in various software systems. 

The abstract concern definitions in this meta concern 

space are used as a basis to delineate requirements into 

concrete concerns. Another novel aspect of the work is 

the notion of a compositional intersection which 

significantly limits the potential number of concerns to 

be used as a base to observe trade-offs between two 

concerns. This is crucial as the compositional 

intersection allows us to limit this number without 

compromising the rigour of the trade-off analysis. 

The trade-off analysis and stakeholder negotiation 

supported by our approach is based on a simple yet 

natural separation of concerns. This offers a powerful 

mechanism to identify influences of the various 

concerns in the system in a multi-dimensional fashion. 

This, in turn, supports better understanding of both 

crosscutting functional and non-functional 

requirements. The early, multi-dimensional trade-off 

analysis provides the requirements engineers with 

insights into problematic interactions amongst 

concerns as well as the cumulative effect of multiple 

concerns on a single concern in the system. These can 

then be discussed and resolved with stakeholders 

before the architecture is derived. This provides an 

opportunity to remedy some of the intricacies of 

reaching an optimal architecture choice. Even so, each 

concern in our multi-dimensional separation still has a 

number of architectural choices (of varying degrees of 

suitability) to satisfy its requirements. We can choose 

the most suitable architectural choice for each concern 

but further trade-offs must be made as the various 

choices pull the architecture in their respective 

directions. The optimal architecture is the one that 

involves architectural choices satisfying each concern 

in the multi-dimensional separation within some 

acceptable limits. These limits are derived from 

discussion with stakeholders during requirements level 

trade-off analysis and subsequent negotiations. This 

provides effective traceability of trade-offs and 

decisions from the requirements level to the 

architecture. 

The multi-dimensional approach presented in this 

paper is a key stepping stone towards more rigorous 

analysis of requirements. To date, requirements 

engineering approaches have remained largely two-

dimensional in their approach to such analysis. Our 

future work will focus on further case studies to 

validate the multi-dimensional approach in structuring 

and analysing requirements in a variety of systems and 

domains. We are also interested in exploring the use of 

fuzzy logic for trade-off analysis based on the weights 

we may give to concerns. This could help us identify a 

process to rank concerns by degree of importance in a 

system and use the result as a basis for incremental 

development. 
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