
0018-9162/99/$10.00 © 1999 IEEE24 Computer

Co
m

pu
tin

g
Pr

ac
tic

es

Design Patterns in
Object-Oriented
Frameworks

D
eveloping interactive software systems
with complex user interfaces has
become increasingly common, with
prototypes often used for demonstrat-
ing innovations. Given this trend, it is

important that new technology be based on flexible
architectures that do not require developers to under-
stand all the complexities inherent in a system.

Object-oriented frameworks provide an important
enabling technology for reusing both the architecture
and the functionality of software components. But
frameworks typically have a steep learning curve since
the user must understand the abstract design of the
underlying framework as well as the object collabo-
ration rules or contracts—which are often not appar-
ent in the framework interface—prior to using the
framework.

In this article, I describe our experience with devel-
oping an object-oriented framework for speech recog-
nition applications that use IBM’s ViaVoice speech
recognition technology. I also describe the benefits of
an object-oriented paradigm rich with design patterns
that provide a natural way to model complex concepts
and capture system relationships.

OBJECT-ORIENTED FRAMEWORKS
Frameworks are particularly important for devel-

oping open systems, where both functionality and
architecture must be reused across a family of related
applications. An object-oriented framework is a set of
collaborating object classes that embody an abstract
design to provide solutions for a family of related
problems. The framework typically consists of a mix-

ture of abstract and concrete classes. The abstract
classes usually reside in the framework, while the con-
crete classes reside in the application. A framework,
then, is a semicomplete application that contains cer-
tain fixed aspects common to all applications in the
problem domain, along with certain variable aspects
unique to each application generated from it.

The variable aspects, called hot spots, define those
aspects of an application that must be kept flexible for
different adaptations of the framework.1 What differ-
entiates one framework application from another in a
common problem domain is the manner in which these
hot spots are defined.

Despite the problem domain expertise and reuse
offered by framework-based development, application
design based on frameworks continues to be a difficult
endeavor. The framework user must understand the
complex class hierarchies and object collaborations
embodied in the framework to use the framework effec-
tively. Moreover, frameworks are particularly hard to

Object-oriented frameworks provide an important enabling technology for

reusing software components. In the context of speech-recognition

applications, the author describes the benefits of an object-oriented

framework rich with design patterns that provide a natural way to model

complex concepts and capture system relationships.

Savitha
Srinivasan
IBM

.

document since they represent a reusable design at a
high level of abstraction implemented by the frame-
work classes.

But design patterns—recurring solutions to known
problems—can be very helpful in alleviating software
complexity in the domain analysis, design, and main-
tenance phases of development. Framework designs
can be discussed in terms of design pattern concepts,
such as participants, applicability, consequences, and
trade-offs, before examining specific classes, objects,
and methods.

Documenting a framework—on paper or in the
code itself—as a set of design patterns is an effective
means of achieving a high level of communication
between the framework designer and the framework
user.2 Using design patterns helped us establish a com-
mon terminology with which we could discuss the
design and use of the framework.

DESIGN PATTERNS
Design patterns are descriptions of communicating

objects and classes that are customized to solve a gen-
eral design problem in a particular context.2 By their
very definition, design patterns result in reusable
object-oriented design because they name, abstract,
and identify key aspects of a common design structure.

Design patterns fall into two groups. The first group
focuses on object-oriented design and programming
or object-oriented modeling, while the second group—
a more recent trend—focuses on patterns that address
problems in efficient, reliable, scalable, concurrent,
parallel, and distributed programming.3 In this article,
I focus primarily on the first group, although my col-
leagues and I used patterns from both categories to
address our design problems.

In designing speech-recognition applications, we
used patterns to guide the creation of abstractions nec-
essary to accommodate future changes and yet main-
tain architectural integrity. These abstractions help
decouple the major components of the system so that
each may vary independently, thereby making the
framework more resilient.

In the implementation stages, the patterns helped
us achieve reuse by favoring object composition or
delegation over class inheritance, decoupling the user
interface from the computational component of an
application, and programming to an interface as
opposed to an implementation.

In the maintenance phases, patterns helped us doc-
ument strategic properties of the software at a higher
level than the source code.

Contracts
Design patterns describe frameworks at a very high

level of abstraction. Contracts, on the other hand, can
be introduced as explicit notation to specify the rules

that govern how objects can be combined to
achieve certain behaviors.4

However, frameworks don’t enforce con-
tracts; if an application does not obey the con-
tracts, it does not comply with the intended
framework design and will very likely behave
incorrectly. To make these relationships more
clear, a number of researchers have introduced
the concept of motifs to document the purpose
and use of the framework in light of the role of
design patterns and contracts.5,6

A FRAMEWORK FOR SPEECH RECOGNITION
We designed a framework for speech recog-

nition applications intended to enable rapid
integration of speech recognition technology in
applications using IBM’s ViaVoice speech recog-
nition technology (http://www.software.ibm.com/
speech/). Our primary objective was to simplify the
development of speech applications by hiding com-
plexities associated with speech recognition technol-
ogy and exposing the necessary variability in the
problem domain so the framework user may cus-
tomize the framework as needed.

We focused on the abstractions necessary to identify
reusable components and on the variations necessary
to provide the customizations required by a user to
create a specific application. While this method
adheres to the classical definition of what a framework
must provide, we consciously incorporated feedback
into the framework evolution process.

Speech concepts and complexities
At a simplistic level, the difference between two

speech recognition applications boils down to what
specific words or phrases you say to the application
and how the application interprets what you say.
What an application understands is of course deter-
mined by what it is listening for—or its active vocab-
ulary. Constraining the size of the active vocabulary
leads to higher recognition accuracy, so applications
typically change their active vocabulary with a change
in context.

The result that the speech recognition engine returns
in response to a user’s utterance is a recognized word.
In the context of a GUI application, the active vocab-
ulary and the recognized words may be different for
each window and may vary within a window, depend-
ing on the state of the application.

Several factors contribute to complexity in devel-
oping speech recognition applications. Recognition
technology is inherently asynchronous and requires
adhering to a well-defined handshaking protocol.
Furthermore, the asynchronous nature of speech
recognition makes it possible for the user to initiate
an action during an application-level task so that the

February 1999 25

Documenting a
framework as a set
of design patterns

is an effective
means of achieving

a high level of
communication

between the
framework designer
and the framework

user.

.

26 Computer

application must either disallow or defer any action
until all previous speech engine processing can be com-
pleted.

Also, speech-programming interfaces typically
require a series of calls to accomplish a single appli-
cation-level task. And achieving high accuracy
requires that the application constantly monitor the
engine’s active vocabulary. The uncertainty associated
with high-accuracy recognition forces the application
to deal with recognition errors while the recognition
engine communicates with applications. It must do so
at a process level and carries no understanding of GUI
windows or window-specific vocabularies. The appli-
cation must therefore build its own infrastructure to
direct and dispatch messages at the window level.

Framework abstractions and hot spots
Common application functions include establish-

ing a recognition session, defining and enabling a pool
of vocabularies, ensuring a legal engine state for each
call, and directing recognized word messages and
engine status messages to different windows in the
application. The application needs explicit hot-spot
identification to handle variations such as the active
window, the active vocabulary in a specific active win-
dow, the recognized words received by the active win-
dow based on the active vocabulary, and the action
that an active window must take based on the recog-
nized word.

Figure 1 shows a high-level view of the layered
framework architecture that we adopted in order to
endow this theory with maximum flexibility and
reuse. The speech recognition engine and speech appli-
cation are separate processes. The first layer, the core
framework, encapsulates the speech engine function-
ality in abstract terms, independent of any specific GUI
class library. A GUI speech recognition application
usually involves the use of a GUI class library; there-
fore, the second layer extends the core framework for
different GUI environments to provide tightly inte-
grated, seamless speech recognition functionality.

Each GUI speech application requires customizing
the GUI extension for the core framework. We mod-

eled the common aspects of the problem domain by
abstract classes in the core framework; the applica-
tion implements concrete classes derived from the
abstract classes. The class diagrams in the following
sections describe the extensions to the core framework
for IBM’s VisualAge GUI class library.

We use the prefix “I” as a naming convention for
the GUI extension classes. For example, the class
ISpeechClient refers to the GUI framework extension
class that provides the core SpeechClient class func-
tionality. We use the Unified Modeling Language
(UML)7 notation generated by Rational Rose to rep-
resent the class diagrams.

Framework collaborations
The class diagram shown in Figure 2 shows the

eventual interface classes for the VisualAge extension
to the core framework classes. (The framework
evolved over time as we developed various applica-
tions.) The IVocabularyManager, ISpeechSession,
ISpeechClient, ISpeechText, and ISpeechObserver
classes provide the necessary abstractions to direct,
dispatch, and receive speech recognition engine events
at a level that is meaningful to the application. The
ISpeechSession class must establish a recognition ses-
sion through ISpeechManager prior to any speech
functions starting.

ISpeechClient, ISpeechText, and ISpeechObserver
provide the necessary abstractions for implementing a
GUI application, but do not contain a GUI compo-
nent. An application creates a speech-enabled GUI
window using multiple inheritance from the
ISpeechClient class and a VisualAge window class
such as IFrameWindow. This inheritance provides
speech functionality and speech engine addressability
at a GUI window level so that recognized words can
be directed to a particular GUI window.

Similarly, an application creates a speech-enabled
text widget using multiple inheritance from the
ISpeechText class and a VisualAge text-widget class
such as IEditControl. This process provides speech
functionality and speech engine addressability at a text-
widget level. Derived ISpeechObserver classes provide
a publish-subscribe protocol necessary to maintain a
consistent speech recognition engine state across all
windows in the application. The IVocabularyManager
class supports the dynamic definition and manipula-
tion of vocabularies. The collaborations of these classes
is internally supported by the ISpeechManager class,
which behaves in the manner of a Singleton pattern2

(discussed later) that makes the class itself responsible
for keeping track of its sole instance.

Figure 3 shows one of the primary hot spots in the
system, the processing of words recognized by the
active ISpeechClient. DictationSpeechClient is a con-
crete class derived from the abstract ISpeechClient

Recognized
word

Engine status

Speech
recognition

engine

Recognition
session

Vocabulary
definition

Core
framework

GUI extension

Speech applicatio
n

Figure 1. The speech
recognition engine
and speech applica-
tion are separate
processes. The first
layer, the core frame-
work, encapsulates
the speech engine
functionality in
abstract terms, inde-
pendent of any spe-
cific GUI class library.
The second layer
extends the core
framework for differ-
ent GUI environments
in order to provide
tightly integrated,
seamless speech
recognition function-
ality.

.

class. The speech engine invokes the pure virtual
method, recognizedWord(), when it recognizes a
word; this gives DictationSpeechClient the ability to
process the recognized word in an application-specific
manner. This process works as designed only if the
application obeys the accompanying contract, which
states that before a user speaks into the microphone
(which invokes the recognizedWord() method),
the application must specify the active ISpeechClient
and its corresponding vocabularies.

A GUI application might contain several windows,
each of which is a multiple-inheritance-derived instance
of ISpeechClient and IFrameWindow. In a case like this,
the framework user must at all times keep track of the
currently active ISpeechClient and ensure that the cor-
rect one is designated as being active. Likewise, enabling
the appropriate vocabulary based on the active
ISpeechClient is the framework user’s responsibility.

One way to do this is to designate the foreground
window as the active ISpeechClient. The application
must track changes in the foreground window and
designate the appropriate derived ISpeechClient as
active. This means that the application must process
the notification messages sent by the IFrameWindow
class when the foreground window changes and must
also update the active ISpeechClient and vocabulary.
Only then will the implementation of the hot spot in
Figure 3 ensure delivery of the recognized words to
the correct window by calling the active ISpeech-
Client’s recognizedWord() method.

FRAMEWORK EVOLUTION THROUGH REUSE
We used a single framework to build four applica-

tions: MedSpeak/Radiology, MedSpeak/Pathology, the
VRAD (visual rapid application development) envi-
ronment, and a socket-based application providing
speech recognition functionality to a video-cataloging
tool. Each application we developed had a particular
effect on the development and evolution of the frame-

work itself. We used some well-known design patterns
to facilitate reuse of design and code and to decouple
the major components of the system. Table 1 sum-
marizes some of the design patterns we used and the
reason we used them.

Initially, we used the Facade pattern to provide a
unified, abstract interface to the set of interfaces sup-
ported by the speech subsystem. The core abstract
speech classes shown in Figure 2 communicate with
the speech subsystem by sending requests to the Facade
object, which forwards the requests to the appropri-
ate subsystem objects. Facade implements the Singleton
pattern, which guarantees a sole instance of the speech
subsystem for each client process.

As the framework evolved, we found ourselves
incorporating new design patterns to extend the
framework’s functionality and manageability.

Radiology dictation application
We designed the MedSpeak/Radiology dictation

application—the first framework we created—to build
reports for radiologists using real-time speech recog-
nition.8 We ourselves were the developers and users
of the framework, which vastly contributed to our
understanding of what the framework requirements
were and helped us find a balance between encapsu-
lating problem domain complexities and exposing the

February 1999 27

IVocabularyManager

ISpeechSession

ISpeechManager

SpeechManager

ISpeechClient

ISpeechText

ISpeechObserver

Application
creates and
uses Singleton
ISpeechSession,
which instantiates
the Visual Age
ISpeechManager
class

ISpeechManager
creates Singleton
SpeechManager
containing
pSpchMgr, which
points to itself

1

1

1 1 pSpchMgr

fSpchMgr

 = Aggregation by value

Figure 2. Interface
classes for the
VisualAge extension to
the core framework
classes. IVocabulary-
Manager, ISpeechSes-
sion, ISpeechClient,
ISpeechText, and
ISpeechObserver
classes provide the
necessary abstractions
to direct, dispatch, and
receive speech recog-
nition engine events at
a level that is meaning-
ful to the application.
The prefix “I” signals a
GUI extension class.

ISpeechClient
recognizedWord (IText &)

DictationSpeechClient

 = Pure virtual method

Figure 3. A hot spot
that processes words
recognized by the
active ISpeechClient.
DictationSpeechClient
is a concrete class
derived from the
abstract ISpeech-
Client class. The
speech engine
invokes the pure vir-
tual method, recog-
nizedWord(),
when it recognizes a
word; this gives Dicta-
tionSpeechClient the
ability to process the
recognized word in an
application-specific
manner.

.

.

28 Computer

variability needed in an application. Specifically, it
indicated to us that we needed a clear separation
between the GUI components and the speech compo-
nents, so we defined the concept of a SpeechClient to
abstract window-level speech behavior.

We used the class Adapter (or Wrapper) pattern to
enable the use of existing GUI classes whose interfaces
did not match the application’s speech class interfaces.2

For example, we used Adapter to create a speech-
enabled GUI window that multiple inherits from both
an abstract SpeechClient class and a specific GUI win-
dow class—in this first application, the XVT GUI class
library. Thus, we were able to encapsulate speech-
aware behavior in abstract framework classes so that
GUI classes did not have to be modified to exhibit
speech-aware behavior.

Finally, we used the Active Object9 and Service
Configurator10 patterns to further decouple the GUI
implementation from the speech framework. Using
the principle embodied in the Active Object pattern,
we separated method definition from method execu-
tion by the use of a speech profile for each applica-
tion, which in essence is the equivalent of a lookup
table. This delayed the binding of a speech command
to an action from compile time to runtime and gave us
tremendous flexibility during development.

Similarly, the Service Configurator pattern decou-
ples the implementation and configuration of services,
thereby increasing an application’s flexibility and
extensibility by allowing its constituent services to be
configured at any point in time. We implemented this
pattern again using the speech profile concept, which
set up the configuration information for each appli-
cation (initial active vocabularies, the ASCII string to
be displayed when the null word or empty string is
returned, and so forth).

Pathology dictation application
MedSpeak/Pathology was similar to the radiology

dictation application, but customized for pathology

workflow. We worked closely with the framework
users in extending the core framework for a GUI envi-
ronment different from that of the previous applica-
tion—namely, the VisualAge GUI class library
discussed earlier in the “Framework collaborations”
section. The ease with which we accomplished this
porting effort validated our Adapter approach to pro-
viding speech functionality in GUI-independent
classes.

However, it brought out an additional requirement
stemming from the specific GUI builder that was being
used—that the class form of the Adapter pattern,
which uses multiple inheritance, was unacceptable.
We therefore modified our usage of the Adapter pat-
tern to the object form (using composition) to accom-
plish the same result. Instead of defining a class that
inherits both Medspeak/Pathology’s SpeechClient
interface and VisualAge’s IFrameWindow implemen-
tation, for example, we added an ISpeechClient
instance to IFrameWindow so that requests for speech
functionality in IFrameWindow are converted to
equivalent requests in ISpeechClient.

Furthermore, the need to provide an abstract
SpeechText class to provide speech-aware edit control
functionality became apparent when we realized the
complexity associated with maintaining the list of dic-
tated words. Likewise, the problems associated with
maintaining the speech engine state across different
windows led to the definition of the SpeechObserver
class using the Observer pattern. The Observer pat-
tern defines an updating interface for objects that need
to be notified of changes in a subject.2

The VRAD environment
The visual rapid application development (VRAD)

class of applications that used our framework provided
us with insight into our original objectives, which
included hiding speech complexities and providing
variability. We planned that the speech framework
classes would be included in an all-encompassing

Table 1. Design patterns used in building the speech-recognition framework.

Design pattern used Reason for using the pattern

Object-oriented patterns
Adapter2 (or Wrapper) Enable the use of existing GUI classes whose interface did not match the speech class interface

Create a reusable class that cooperates with unrelated GUI classes that don’t necessarily have
compatible interfaces

Facade2 Provide an abstract interface to a set of interfaces supported by the speech subsystem
Abstract speech concepts to facilitate the use of a different speech recognition technology

Observer2 Notify and update all speech-enabled GUI windows in an application when speech engine changes
occur

Singleton2 Create exactly one instance of the speech subsystem interface class per application since the
recognition system operates at the process level

Distributed or concurrent patterns
Active Object9 Decouple method invocation from method execution in the application when a particular word is

recognized
Asynchronous Completion Token12 Allow applications to efficiently associate state with the completion of asynchronous operations
Service Configurator10 Decouple the implementation of services from the time when they are configured

.

object-oriented programming framework, the Visual-
Age class library. The previous pathology dictation
application was one instance of an application that
used the VisualAge class library together with the
speech framework.

The greatest impediment to the acceptance of the
framework by the VRAD users was that the public
interface by itself didn’t adequately provide the under-
standing necessary to create speech applications
rapidly. For example, the variability provided by the
hot spot in Figure 3 requires that the application
enforce the designation of the correct ISpeechClient
as well as the active vocabulary. Users had to turn to
the framework documentation in order to understand
the accompanying contracts. Furthermore, our use of
the class form of the Adapter pattern, which uses mul-
tiple inheritance, forced the users to understand the
behavior of the parent classes. This was additional
motivation for us to favor the object form of the
Adapter pattern.

We therefore modified the public interface in an
effort to reflect the client’s view, while still ensuring
that the necessary contracts were enforced. To accom-
plish this, we created additional hot spots that helped
framework users comply with the internal constraints
not ordinarily visible in the external interface but
apparent on reading the documentation. The actual
implementation of the additional hot spots adhere to
standard framework practice of maintaining invari-
ants within the framework and forcing the clients to
override abstract methods.

SpeechSession. Figure 4 shows an implementation
of the first user-identified hot spot in which the active
ISpeechClient must be explicitly specified by the
framework user. The new hot spot requires the frame-
work user to create a concrete AppSpeechSession class
derived from an abstract ISpeechSession class.
SpeechSession hides from the user the speech subsys-
tem’s Facade object, which was previously a public
framework class. To implement AppSpeechSession,
the framework user must define the pure virtual
method, getSpeechClient(), which the frame-
work invokes to get the active ISpeechClient.

This hot spot necessarily draws the framework
user’s attention to the fact that an active ISpeechClient
must be specified prior to beginning the recognition
process, which alleviates the problem of designating
the active ISpeechClient when the application starts.
However, the behavior of updating the active
ISpeechClient when the foreground window changes
may also be implemented by the same hot spot. The
creation of a new abstract class that derives from
ISpeechClient and IFrameWindow can encapsu-
late the change in foreground window notification
from the IFrameWindow class and invoke the
getSpeechClient() method.

SpeechClient. Figure 5 shows an implementation of
the second user-identified hot spot. When a particu-
lar ISpeechClient is active, the appropriate vocabulary
must be activated. Enforcing this rule by invoking a
pure virtual method, getVocabulary(), in the
active ISpeechClient ensures that the active vocabu-
lary gets updated by the framework user for each new
active ISpeechClient. This method returns the right
vocabulary based on the state of that particular
ISpeechClient. Here again, this hot spot forces the
framework user to specify the active vocabulary prior
to beginning the recognition process, which also
ensures that there are no surprises regarding active
vocabularies and recognized words received by the
active ISpeechClient.

Socket interface applications
The socket interface class of applications was dif-

ferent from the others because we used a specific
framework application to provide speech recognition
services to numerous non-C++ client applications. We
built a VRAD application and extended the frame-
work to support a socket interface to read and write
operations on a socket connection, thus making irrel-

February 1999 29

ISpeechSession
getSpeechClient () : ISpeechClient

AppSpeechSession

Figure 4. User-identified hot spot: Which ISpeechClient is
active? The new hot spot requires the framework user to cre-
ate a concrete AppSpeechSession class derived from an
abstract ISpeechSession class. This hot spot necessarily
draws the framework user’s attention to the fact that an
active ISpeechClient must be specified prior to beginning the
recognition process.

ISpeechClient
getVocabulary () : IText

DictationSpeechClient

Figure 5. User-identified hot spot: Which vocabulary is active?
When a particular ISpeechClient is active, the appropriate
vocabulary must be activated. Enforcing this rule by invoking a
pure virtual method, getVocabulary(), in the active
ISpeechClient ensures that the active vocabulary gets updated
by the framework user for each new active ISpeechClient.

.

30 Computer

evant the runtime environment of the actual speech
application. The relative ease with which we were able
to add a socket-based string interface for speech recog-
nition in a new SocketSpeechClient class only rein-
forced our Adapter approach in the framework.

BUILDING RESILIENCE
Table 2 summarizes different aspects of our experi-

ence with the various framework applications we
developed. With each new application, the number of
framework interface classes grew to encapsulate dis-
tinct functional areas, which exemplifies the principle
of modularizing to conquer complexity. But we didn’t
capture all abstractions in the problem domain during
the initial analysis phase. In fact, some framework
applications led to the creation of new speech inter-
face abstractions necessary in the analysis and design
phases.

As a result, though, the framework realized more
design patterns allowing for greater resilience. We
were able to abstract more domain knowledge into
the core framework, which minimized the required
GUI-specific extensions. The last rows in Table 2 sum-
marize the breakdown of code split between the core
framework and the GUI extensions to the framework.
Figure 6 shows the movement of the classes from the
application/GUI extension to the core framework,
which results in the 97 to 3 percent split from the orig-
inal 75 to 25 percent.

MOTIVATED AND UNMOTIVATED USERS
The unmotivated user’s perspective helped further

abstract problem domain concepts. Figure 6 shows an
increasing abstraction of speech concepts into the core
framework classes with each new application. It shows
the change in distribution of functionality between the
core framework classes, GUI-specific extensions, and
the application—as the framework evolved.

The first framework application, Medspeak/
Radiology, forced the framework user to understand
and create SpeechObserver and VocabularyManager
concepts. By the second application, we realized that
these concepts were sufficiently abstract to be encap-
sulated within the framework. At the end of the third
iteration, where we faced the most critical users,
we had further abstracted SpeechObserver and
VocabularyManager classes into the core framework.
This was largely driven by an attempt to alleviate the
user’s confusion in understanding the collaborations
between the VocabularyManager, SpeechObserver,
and SpeechSession classes.

The unmotivated framework user’s perspective can
also contribute to the evolution to a black-box frame-
work from a white-box one.11 Our original white-box
framework required an understanding of how the
GUI extensions to the core framework classes work,
so that correct subclasses could be developed in the
application. The VRAD user’s reluctance to accept
this forced us to favor composition over inheritance
in the application. We continued to use inheritance
within the framework to organize the classes in a hier-
archy, but use composition in the application, which
allows maximum flexibility in development.

REDUCING THE LEARNING
CURVE WITH HOT SPOTS

Additional hot spots created as a result of the
framework user’s perspective play an important role
in reducing the learning curve associated with a frame-
work. This conclusion appears somewhat paradoxi-
cal because hot spots are typically implemented in
frameworks using object inheritance or object com-
position,1,2 and both suffer from severe limitations in
understandability.

A classic problem in comprehending the architec-
ture of a framework from its inheritance hierarchy is

Table 2. Framework applications summary.

OO framework Radiology dictation Pathology dictation VRAD applications Socket applications

External framework SpeechClient SpeechClient, SpeechSession, SpeechSession,
classes SpeechText, SpeechClient, SpeechClient,

SpeechObserver SpeechText, SpeechText,
SpeechObserver, SpeechObserver,
VocabularyManager VocabularyManager

Required extensions Yes Yes Yes No
Employed patterns Active Object, Active Object, Active Object, Active Object, Adapter,

Adapter, Adapter, Adapter, Asynchronous Completion Token,
Facade/Singleton, Facade/Singleton, Asynchronous Facade/Singleton, Observer,
Service Configurator Service Configurator Completion Token, Service Configurator,

Facade/Singleton
Observer, Service Configurator

Speech functions Dictation, Command Dictation, Command Dictation, Command, Command, Grammars
Grammars

Speech functionality
(percentage)
in core framework 75 80 90 97
in the GUI extensions 25 20 10 3

.

that inheritance describes relationships between
classes, not objects. Object composition achieves
more flexibility because it delegates behavior to other
objects that can be dynamically substituted. However
it does not contribute to the understanding of the
architecture either, since the object structures may be
built and modified at runtime. Despite this, we believe
that the hot spots contribute to reducing the learning
curve. The primary hot spots address high-level vari-
ability, but require an understanding of the underly-
ing contracts and related framework architecture.

Designing for variability appears to be an impor-
tant facet of the user perspective, too. Applications
can be made to obey framework contracts, where pre-
viously contracts were merely structured documen-
tation techniques to formalize object collaborations.
And since variability is often implemented using
design patterns, we were able to achieve an impor-
tant goal: a common vocabulary for communicating
with the framework users. The additional hot spots
generated by the user’s perspective complement the
primary ones and result in a design that necessarily
exposes the object collaborations in the framework.

Arguably, the new hot spots identified as the frame-
work evolved could have been identified in the origi-
nal design. We contend that as domain experts, even
though we abstract the common aspects and separate
them from the variable aspects, we do so at a suffi-
ciently high level that we mandate a minimum under-
standing of built-in object collaborations in the
framework. Originally, we had identified the hot spot
addressing the flexibility required to process recog-
nized words within an application. But this works only

if the user understands the underlying collaborations
between vocabulary objects and speech client objects
documented in a contract. Some of the less glaring hot
spots—such as the active vocabulary and active speech
client—are apparent as hot spots only when we view
the framework from a framework user’s perspective.
The level of reuse and the productivity gains achieved
summarized in Table 2 were obtained by informal user
testing, and by evaluating the number of lines of code
written and the amount of time spent to develop a new
framework application as the framework evolved.

Ultimately, using a common set of abstractions
across the analysis, design, and implementa-
tion phases and the use of design patterns to

capture these abstractions led to better communica-
tion and a more efficient technique for handling
changes as the framework evolved. Design patterns
helped us more effectively communicate the internal
framework design and made us less dependent on the
documentation. ❖

Acknowledgment
This framework was originally developed as part of

the Medspeak/Radiology product with John Vergo at
the IBM T.J. Watson Research Center.

References
1. W. Pree, Design Patterns for Object-Oriented Software

Development, Addison-Wesley, Reading, Mass., 1994.
2. E. Gamma et al., Design Patterns: Elements of Reusable

February 1999 31

Vocabulary
manager

Speech
session

Medspeak/
pathology

Speech
client

Speech
text Core framework

Speech
observer

VisualAge extensions
to core framework

(b)

Speech
observer

Vocabulary
manager

Medspeak/
Radiology

Speech
client

Core
framework

Speech
text

XVT extensions
to core framework

(a)

Speech
observer

Vocabulary
manager

Core
framework

Speech
client

Speech
text

Speech
session VisualAge extensions to core framework

(c)

VRAD application

Figure 6. Increasing abstraction of problem domain concepts with each new contract implicit in each application. Each application requires a slightly
different architecture: (a) Medspeak/Radiology application, (b) Medspeak/Pathology application, (c) VRAD applications. The Socket application (not
shown) simply adds a socket interface class on top of the SpeechSession class as an extension to the VRAD framework classes.

.

Object-Oriented Software, Addison-Wesley, Reading,
Mass., 1995.

3. D.C. Schmidt, R.E. Johnson, and M. Fayad, “Software
Patterns,” Comm. ACM, Oct. 1996, pp. 36-39.

4. R. Helm, I.M. Holland, and D. Gangopadhyay, “Con-
tracts: Specifying Behavioral Compositions in Object-
Oriented Systems,” Proc. OOPSLA 90, ACM Press,
New York, 1990, pp. 169-180.

5. R.E. Johnson, “Documenting Frameworks Using Pat-
terns,” Proc. OOPSLA 92, ACM Press, New York,
1994, pp. 63-76.

6. R. Lajoie and R. Keller, “Design and Reuse in Object-
Oriented Frameworks: Patterns, Contracts, and Motifs
in Concert,” Proc. Colloquium on Object Orientation in
Databases and Software Engineering, World Scientific,
River Edge, N.J., 1994, pp. 295-312.

7. G. Booch, Object Oriented Analysis and Design, Ben-
jamin/Cummings, Los Angeles, 1994.

8. J. Lai and J. Vergo, “MedSpeak: Report Creation with
Continuous Speech Recognition,” Proc. CHI 97, ACM
Press, New York, 1997, pp. 431-438.

9. D.C. Schmidt and G. Lavender, “Active Object: An
Object Behavioral Pattern for Concurrent Program-
ming,” Proc. Second Pattern Languages of Programs

Conf., Addison-Wesley, Menlo Park, Calif., 1995.
10. P. Jain and D. Schmidt, “Service Configurator–A Pattern

for Dynamic Configuration of Services,” Proc. Third
Usenix Conf. Object-Oriented Technology and Systems,
Usenix, Berkeley, Calif., 1997.

11. D. Roberts and R.E. Johnson, “Evolving Frameworks:
A Pattern Language for Developing Object-Oriented
Frameworks,” Pattern Languages of Program Design 3,
R. Martin, D. Riehle, and F. Buschmann, eds., Addison
Wesley Longman, Reading, Mass., 1998.

12. T. Harrison, D. Schmidt, and I. Pyarali, “Asynchronous
Completion Token,” Pattern Languages of Program
Design 3, R. Martin, D. Riehle, and F. Buschmann, eds.,
Addison Wesley Longman, Reading, Mass., 1998.

Savitha Srinivasan is a software engineer in the Visual
Media Group at the IBM Almaden Research Center
in San Jose, California. Her current research interests
include using speech recognition and other synergis-
tic techniques, while practicing object-oriented tech-
nology. She received an MS degree in computer science
from Pace University.

Contact Srinivasan at savitha@almaden.ibm.com.

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of
technical information in the field.

ME M B E R S HI P Members receive the
monthly magazine COMPUTER, discounts, and
opportunities to serve (all activities are led by
volunteer members). Membership is open to
all IEEE members, affiliate society members,
and others interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 1999: Steven L. Diamond, Rich-
ard A. Eckhouse, Gene F. Hoffnagle, Tadao Ichikawa,
James D. Isaak, Karl Reed, Deborah K. Scherrer
Term Expiring 2000: Fiorenza C. Albert-
Howard, Paul L. Borrill, Carl K. Chang, Deborah M.
Cooper, James H. Cross III, Ming T. Liu, Christina M.
Schober
Term Expiring 2001: Kenneth R. Anderson,
Wolfgang K. Giloi, Haruhisa Ichikawa, David G.
McKendry, Anneliese von Mayrhauser, Thomas W.
Williams
Next Board Meeting: 19 Feb. 1999,
Houston, Texas

I E E E O F F I C E R S
President: KENNETH R. LAKER
President-Elect: BRUCE A. EISENSTEIN
Executive Director: DANIEL J. SENESE
Secretary: MAURICE PAPO
Treasurer: DAVID CONNOR
VP, Educational Activities: ARTHUR W. WINSTON
VP, Publications: LLOYD “PETE” MORLEY
VP, Regional Activities: DANIEL R. BENIGNI
VP, Standards Activities: DONALD LOUGHRY
VP, Technical Activities: MICHAEL S. ADLER
President, IEEE-USA: PAUL KOSTEK

EXECUTIVE
COMMITTEE

President: LEONARD L. TRIPP *
Boeing Commercial
Airplane Group
P.O. Box 3707, M/S19-RF
Seattle, WA 98124
O: (206) 662-4437
F: (206) 662-14654404
l.tripp@computer.org

President-Elect:
GUYLAINE M. POLLOCK *
Past President:
DORIS CARVER *
VP, Press Activities:
CARL K. CHANG*
VP, Educational Activities:
JAMES H. CROSS *
VP, Conferences and Tutorials:
WILLIS KING (2ND VP) *
VP, Chapter Activities:
FRANCIS LAU *
VP, Publications:
BENJAMIN W. WAH (1ST VP)*
VP, Standards Activities:
STEVEN L. DIAMOND *
VP, Technical Activities:
JAMES D. ISAAK *
Secretary:
DEBORAH K. SCHERRER *
Treasurer:
MICHEL ISRAEL*
IEEE Division V Director
MARIO R. BARBACCI
IEEE Division VIII Director
BARRY JOHNSON *
Executive Director
and Chief Executive Officer:
T. MICHAEL ELLIOTT

C O M P U T E R S O C I E T Y W E B S I T E
The IEEE Computer Society’s Web site, at http://
computer.org, offers information and samples
from the society’s publications and conferences, as
well as a broad range of information about tech-
nical committees, standards, student activities, and
more.

COMPUTER SOCIETY O F F I C E S
Headquarters Office
1730 Massachusetts Ave. NW, Washington, DC 20036-1992
Phone: (202) 371-0101 • Fax: (202) 728-9614
E-mail: hq.ofc@computer.org
Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
General Information:
Phone: (714) 821-8380 • membership@computer.org
Membership and Publication Orders:
Phone (800) 272-6657 • Fax: (714) 821-4641
E-mail: cs.books@computer.org
European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: 32 (2) 770-21-98 • Fax: 32 (2) 770-85-05
E-mail: euro.ofc@computer.org
Asia/Pacific Office
Watanabe Building, 1-4-2 Minami-Aoyama,
Minato-ku, Tokyo 107-0062, Japan
Phone: 81 (3) 3408-3118 • Fax: 81 (3) 3408-3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Executive Director and Chief Executive Officer:
T. MICHAEL ELLIOTT
Publisher: MATTHEW S. LOEB
Director, Volunteer Services: ANNE MARIE KELLY
Chief Financial Officer: VIOLET S. DOAN
Chief Information Officer: ROBERT G. CARE
Manager, Research & Planning: JOHN C. KEATON

12JAN1999

®

.

