
Elemental Design Patterns: A Formal Semantics for Composition of OO
Software Architecture

Jason McC. Smith, David Stotts
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175
{smithja, stotts}@cs.unc.edu

Abstract

Design patterns are an important concept in the field of
software engineering, providing a language and application
independent method for expressing and conveying lessons
learned by experienced designers. There is a large gap,
however, between the aesthetic and elegance of the patterns
as intended and the reality of working with an ultimately
mathematically expressible system such as code. In this pa-
per we describe a step towards meaningful formal analysis
of code within the language of patterns, and discuss poten-
tial uses. The major contributions include: a compendium
of Elemental Design Patterns (EDPs), a layer of seemingly
simplistic relationships between objects that, on closer in-
spection, provide a critical link between the world of formal
analysis and the realm of pattern design and implementa-
tion without reducing the patterns to merely syntactic con-
structs; an extension to the ς-calculus, termed ρ-calculus,
a formal notation for expressing relationships between the
elements of object oriented languages, and its use in ex-
pressing the EDPs directly. We discuss their use in compo-
sition and decomposition of existing patterns, identification
of pattern use in existing code to aid comprehension, and fu-
ture research directions, such as support for refactoring of
designs, interaction with traditional code analysis systems,
and the education of students of software architecture.

1. Problem Description

Programming has historically been an exercise in the cre-
ation of hierarchical abstractions to manage complexity. As
programming techniques have progressed in the field, lan-
guage designers have continued to push the envelope of
producing explicit constructs for those conceptual lessons
learned in the previous generation of languages, and soft-
ware architects have continued to build ever more complex
and powerful abstractions. At the same time that these ab-

stractions have established methods for producing well de-
signed systems, they have created problems for the pure
theorist and the accomplished practitioner alike, resisting
attempts at the formalizations that are necessary for many
critical analyses of system architectures.

One of the current successful abstractions in widespread
use is the design pattern, an approach that builds upon the
nature of object oriented languages to describe portions of
systems that designers can learn from, modify, apply, and
understand as a single conceptual item[13]. Design patterns
are generally, if informally, defined as common solutions to
common problems which are of significant complexity to
require an explicit discussion of the scope of the problem
and the proposed solution. Much of the popular literature
on design patterns is dedicated to these larger, more com-
plex patterns, providing the practitioner with increasingly
powerful constructs with which to work.

There is a class of problems, however, which is even
more common, yet design patterns have in general ignored.
These problems are usually considered too obvious to pro-
vide a description for, because they are in every good pro-
grammer’s toolkit. The solutions to this class of problems
we term Elemental Design Patterns (EDPs), and are the
base concepts on which the more complex design patterns
are built. Since they comprise the constructs which are used
repeatedly within the more common patterns to solve the
same problems, such as abstraction of interface and delega-
tion of implementation, they exhibit some interesting prop-
erties for partially bridging the gap between the source code
of everyday practice and the higher level abstractions of the
larger patterns. The higher-level patterns are thus described
in the language of elemental patterns, which fills an appar-
ent missing link in the abstraction chain.

Design patterns also present an interesting set of prob-
lems for the theorist due to their dual nature[2], with both
formally expressible and informally amorphous halves. The
concepts contained in patterns are those that the profes-
sional community has deemed important and noteworthy,
and they are ultimately expressed as source code that is re-

1

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

ducible to a mathematically formal notation. The core con-
cepts themselves, however, have to date evaded such for-
malization. We show here that such a formalization is in
most cases possible, and in addition that it can meet certain
critieria we deem essential.

We assert that such a formal solution should be imple-
mentation language independent, much as the design pat-
terns are, if it is to truly capture universal concepts of pro-
gramming methodology. We further assert that a formal de-
notation for pattern concepts should be a larger part of the
formal semantics literature. Patterns are built on the theory
and concepts of object-oriented programming, as surely as
object-oriented approaches are built on procedural theory.
A formal representation of patterns should reflect this, al-
lowing for more detailed analysis of the code body if it is
desired, or allowing an analysis at a very high level of ab-
straction.

We begin with the sigma (ς) calculus[1], an object-
oriented analogue to lambda calculus. To this we add the
ability to encode relationships between the constructs of ς-
calculus though the use of reliance operators. We show how
the combined calculus, the rho (ρ) calculus, can be used to
express our EDPs directly and precisely, which in turn are
used to express the more common class of design patterns.
In essence, we build a well defined and formal chain from a
basic denotational semantics for object based languages in
general to the language of design patterns, providing a clear
path between them, with well formed transformations and
the opportunity for various interesting analyses of patterns
and their applications within systems.

This ρ-calculus can be used as a framework to analyze
source code, both legacy and newly implemented, and sys-
tem architectures, for instances of design patterns, through
the discovery of EDPs and their relationships. This discov-
ery process is language, tool, and coding-style-independent,
and relies only on a syntactic parsing of the source code, as
any compiler can do. By providing engineers with such a
tool of discovery and analysis, we aid in the comprehension
of a system by bringing to light hidden, and perhaps unin-
tended, uses of design patterns. The revelation of higher
level abstractions such as design patterns gives the engineer
important clues as to the operation and structure of the sys-
tem.

2. Related work

The decomposition and analysis of patterns is an estab-
lished idea, and the concept of creating a hierarchy of re-
lated patterns has been in the literature almost as long as
patterns themselves[8, 18, 26, 33]. The few researchers
who have attempted to provide a truly formal basis for pat-
terns have most commonly done so from a desire to perform
refactoring of existing code, while others have attempted

the more pragmatic approach of identifying core compo-
nents of existing patterns in use. Additionally, there has
been an ongoing philosophical interest in the very nature of
coding abstractions such as patterns, and their relationships.

2.1. Refactoring Approaches

Refactoring[12] has been a frequent target of formaliza-
tion techniques, with fairly good success to date[9, 20, 22].
The primary motivation is to facilitate tool support for, and
validation of, transformation of code from one form to an-
other while preserving behaviour. This is an important step
in the maintenance and alteration of existing systems, and
patterns are seen as the logical next abstraction upon which
they should operate.

Such techniques include fragments, as developed by
Florijm, Meijers, and van Winsen[11], Eden’s work on
LePuS[10], Ó Cinnéide’s work in transformation and refac-
toring of patterns in code[21] through the application of
minipatterns.

2.2. Structural Analyses

An analysis of the ’Gang of Four’ (GoF) patterns from
the Design Pattens text [13] reveals many shared struc-
tural and behavioural elements, such as the similarities be-
tween Composite and Visitor, for instance[13]. The rela-
tionships between patterns, such as inclusion or similarity,
have been investigated by various practitioners, and a num-
ber of meaningful examples of underlying structures have
been described. [4, 8, 26, 31, 32, 33]

The Objectifier pattern[33] is one such example of a
core piece of structure and behaviour that is shared between
many more complex patterns. Its Intent is to

“Objectify similar behaviour in additional
classes, so that clients can vary such behaviour
independently from other behaviour, thus sup-
porting variation-oriented design. Instances from
those classes represent behaviour or properties,
but not concrete objects from the real world
(similar to reification).”

Zimmer uses the Objectifier as a ‘basic pattern’ in the con-
struction of several other GoF patterns, such as Builder, Ob-
server, Bridge, Strategy, State, Command and Iterator. It is
a simple yet elegantly powerful structural concept that is
used repeatedly in other patterns.

Woolf takes this pattern one step further, adding a be-
havioural component, and naming it Object Recursion[32].
The class diagram in Figure 2 is extremely similar to Objec-
tify, with an important difference, namely the behaviour in
the leaf subclasses of Handler. Exclusive of this method be-
haviour, however, it looks to be an application of Objectify

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

Client

ref Objectifier

OperationA()
OperationB()

ConcreteObjectifierB

OperationA()

OperationB()

ConcreteObjectifierA

OperationA()

OperationB()

Figure 1. Objectifier class structure

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()

preHandleRequest()

postHandleRequest()

handler

successor

*

this.preHandleRequest();

successor.handleRequest();

this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Figure 2. Object Recursion class structure

in a more specific use. Note that Woolf compares Object
Recursion to the relevant GoF patterns and deduces that: It-
erator, Composite and Decorator can, in many instances, be
seen as containing an instance of Object Recursion; Chain
of Responsibility and Interpreter do contain Object Recur-
sion as a primary component.

2.3. Conceptual Relationships

Taken together, the above instances of analyzed pattern
findings seem to comprise two parts of a larger chain: Ob-
ject Recursion contains an instance of Objectify, and both
in turn are used by larger patterns. This indicates that
there are meaningful relationships between patterns, yet
past work has shown that there are more primary forces
at work. Buschmann’s variants[6], Coplien and others’
idioms[3, 8, 19], and Pree’s metapatterns[25] all support
this viewpoint. It will become evident that these relation-
ships between concepts are a core piece of allowing great
flexibility to the practitioner implementing patterns in de-
sign, through constructs we term isotopes. A full discus-
sion of isotopes is beyond the scope of this paper, but can
be found in [29].

This paper will answer the following questions: how far
can we take this decomposition and recomposition of pat-
terns in a meaningful way? Is it possible to continue to
identify useful solutions to common problems within the

patterns literature? Is it further possible to identify relation-
ships between these components? How finely can patterns
be deconstructed? Is to do so useful, or merely a theoretical
exercise?

3. The EDP Catalog

Our first task was to examine the existing canon of de-
sign pattern literature, and a natural place to start is the ubiq-
uitous Gang of Four text[13]. Instead of a purely structural
inspection, we chose to attempt to identify common con-
cepts used in the patterns. A first cut of analysis resulted
in eight identified probable core concepts. Of these eight,
five involved method invocation, leading us to investigate
method interactions from a more abstract approach.

The method calls involved in the GoF patterns were clas-
sifiable by three orthogonal properties:

• The relationship of the target object instance to the
calling object instance.

• The relationship of the target object’s type to the call-
ing object’s type

• The relationship between the method signatures of the
caller and callee

The remaining component abstractions from the GOF
patterns consisted of abstractions related to object creation,
abstract interface of methods, and object retrieval seman-
tics. When it is understood that these comprise, respec-
tively, object instantiation, method slot fulfillment, and ob-
ject referencing, it becomes clear that when combined with
our method call invocation styles and type subsumption
through inheritance, all of object-oriented programming be-
comes available for analysis using this technique.

We present in this paper just a listing of the identified
Elemental Design Patterns. A more complete discussion of
their derivation can be found at [28]. We do not claim that
this list covers all the possible permutations of interactions,
but that these are the core catalog of EDPs upon which oth-
ers will be built.

Object Element EDPs
CreateObject AbstractInterface
Retrieve

Type Relation EDPs
Inheritance

Method Invocation EDPs
Recursion Conglomeration
Redirect Delegate
ExtendMethod RevertMethod
RedirectInFamily DelegateInFamily
RedirectedRecursion RedirectInLimitedFamily
DelegateInLimitedFamily DelegatedConglomeration

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

At first glance, these EDPs seem highly unlikely to be
very useful, as they appear to be positively primitive... and
they are. These are the core primitives that underlie the
construction of patterns in general. Patterns are, to be pre-
cise, descriptions of relationships between objects, accord-
ing to Alexander[2], and method invocations and typing are
the process through which objects interact. We believe that
we have captured the elemental components of object ori-
ented languages, and the salient relationships used in the
vast majority of software engineering. If patterns are the
frameworks on which to create large understandable sys-
tems, these are the nuts and bolts that comprise the frame-
works.

And yet, each is unique from the others, each satisfies
a different set of constraints, a different set of forces, and
solves a slightly different problem. Each provides a degree
of semantic context and a bit of conceptual elegance, in ad-
dition to a purely syntactical construct. In this context these
are still truly patterns, and provide us with an interesting
opportunity, to begin to build patterns from first principles
of programming, namely formalizable denotation.

4. Formalization

Software historically has been rooted firmly in formal
notations. Formal descriptions of software most decidedly
lend themselves to a pattern’s formal description using a
formal notation. The entire pattern does not need to be given
a formal form, nor would it be improved by doing so. The
formal descriptions, however, should be as formal as possi-
ble without losing the generality that makes patterns useful.
Source code is, at its root, a mathematical symbolic lan-
guage with well formed reduction rules. We should strive
to find an analogue for the formal side of patterns.

The question then arises as to how formal we can get
with such an approach. A full, rigid formalization of static
objects, methods, and fields would only be another form of
source code, invariant under some transformation from the
actual implementation. This defeats the purpose of patterns.
We must find another aspect of patterns to encode as well,
in order to preserve the flexibility of patterns.

4.1. Sigma Calculus

An analysis of desired traits for an intermediate formal-
ization language includes that it be mathematically sound,
consist of simple reduction rules, have enough expressive
power to directly encode object-oriented concepts, and have
the ability to flexibly encode relationships between code
constructs. Given these constraints, there are few options.
The most obvious possible solution is lambda calculus or
one of its variants [30], but lambda calculus cannot di-
rectly encode object-oriented constructs. Various exten-

sions which would enable lambda calculus to do so have
been proposed, but they invariably produce a highly cum-
bersome and complex rule set in an attempt to bypass appar-
ently fundamental problems with expressing typed objects
with a typed functional calculus [1]. One final candidate,
sigma calculus, meets this requirement easily.

ς-calculus[1] is not an extension of λ-calculus. Attempts
to produce such a hybrid have been made, but none has been
particularly successful. A prime motivation for working to
graft OO technologies onto λ-calculus is a desire to lever-
age off of the extremely large body of well done literature
in that area. By starting anew, Abadi and Cardelli at first
glance seem to have disposed of that body of work. On
the contrary, they correctly recognize that the entirety of λ-
calculus can be subsumed within the method calls of OOP.
They even provide a mapping from λ-calculus to ς-calculus,
resulting in “a simple and direct reduction semantics, in-
stead of an indirect semantics involving both λ-abstraction
and application.” [1, p. 66]

While ς-calculus is a rich and important work in formal-
ization of object oriented languages, it does not meet our
needs for formalization of design patterns. Not only is it ex-
tremely unwieldly, but it also suffers from a complete rigid-
ity of form, and does not offer any room for interpretation
of the implementation description, or any necessary fungi-
bility that may be required for a specific application. This
lack of adaptiveness means that there would be an explosion
of definitions for just a simple pattern, each of which con-
formed to a single particular implementation. This breaks
the distinction that patterns are implementation independent
descriptions, as well as creating an excessively large library
of possible pattern forms to search for in source code.

4.2. Reliance operators: The Rho Calculus

It is fortunate then, that ς-calculus is simple to extend.
We propose a new set of rules and operators within ς-
calculus to support directly relationships and reliances be-
tween objects, methods and fields.

These reliance operators, as we have termed them, (the
word ‘relationship’ is already overloaded in the current lit-
erature, and only expresses part of what we are attempting
to deliver) are direct, quantifiable expressions of whether
one element, (an object, method, or field) in any way relies
or depends on the existance of another for its own definition
or execution, and to what extent it does so.

This approach provides more detail than the formal de-
scription provided by UML, for instance. The calculus
comprised of ς-calculus and these reliance operators, or
rho (ρ)calculus, maps nicely to the concepts of IsA, HasA,
HoldsA, UsesA, and so on that exist within UML, indi-
cating that a simple mapping between the two should ex-
ist. Unlike UML, however, reliance operators encode entire

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

paths of reliances in a concise notation. All the reliances
and relationships in the UML graphing system are encoded
within the element that is under scrutiny, reducing the need
for extended, and generally recursive, analysis for each ele-
ment when needed.

We would like to continue the general notation of ς-
calculus, so we adopt the operator used for subsumption,
<:, analogous to IsA, and provide a similar sign, �, that
indicates a reliance relationship. If A � B, then A relies
on B in some manner. It may be the interface, the imple-
mentation, a data member access, or a particular method
call of B which is relied on by A for proper definition and
operation. Differentiating between these paths of reliance is
a bit more challenging.

For the purposes of this paper we need only two reliance
operators: First, �m, indicating a method invocation call
reliance. Given the expression a.f �m b.g, it indicates
that within the body of method f in object a, a call is made
to method g of object b. Secondly, <:, the traditional inher-
itance (or more properly subsumption of type,) showing a
type reliance.

4.3. Example: RedirectInFamily

Consider the class diagram for the structure of the
Method Invocation EDP RedirectInFamily, in Figure 3.
Taken literally, it specifies that a class wishes to invoke a
similar method (where, again, similarity is evaluated based
on the function types of the methods) to the one currently
being executed, and it wishes to do so on an object of its par-
ent class’ type. This sort of open-ended structural recursion
is a part of many patterns.

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 3. RedirectInFamily class structure

If we take an example Participants specification of Redi-
rectInFamily, described as a pattern, we can state:

• FamilyHead defines the interface, contains a method
to be possibly overridden.

• Redirecter uses interface of FamilyHead through in-
heritance, redirects internal behaviour back to an in-
stance of FamilyHead to gain polymorphic behaviour
over an amorphous object structure.

We can express each of these requirements in ς-calculus:

FamilyHead ≡ [operation : A] (1)

Redirecter <: FamilyHead (2)

Redirecter ≡ [target : FamilyHead,

operation :A= ς(xi){target.operation}](3)

r : Redirecter (4)

fh : FamilyHead (5)

r.target = fh (6)

This is a concrete implementation of the RedirectIn-
Family structure, but fails to capture the reliance of Redi-
recter.operation on FamilyHead.operation’s behaviour. So,
we introduce our reliance operator �m:

r.operation �m r.target.operation (7)

We can reduce one level of indirection...

r.target = fh, r.operation �m r.target.operation

r.operation �m fh.operation
(8)

...and now we can produce a necessary and sufficient set of
clauses at this point to represent RedirectInFamily:

Redirecter <: FamilyHead,
r : Redirecter,

fh : FamilyHead,
r.operation �m fh.operation,

r.operation : A,
fh.operation : A

RedirectInFamily(r, fh, operation)
(9)

5. Reconstruct known patterns

We can now adequately demonstrate an example of using
EDPs to express larger and well known design patterns. We
begin with AbstractInterface, a simple EDP, and build our
way up to the GOF pattern Decorator, building and using
two intermediate patterns from the literature along the way.

5.1. AbstractInterface

AbstractInterface is, simply put, ensuring that the
method in a base class is truly abstract, forcing subclasses
to override and provide their own implementations. The ex-
ceedingly simple class diagram for this is given in Figure 4.
The ρ-calculus definition can be given by simply using the
trait construct of ς-calculus:

A ≡ [new : [li : A → Bi
i ∈ 1...n], operation : A → B]

AbstractInterface(A, operation)
(10)

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

A

operation()

Figure 4. AbstractInterface

5.2. Objectifier

It should be obvious by now that Objectifier is simply
a class structure applying the Inheritance EDP to an in-
stance of AbstractInterface pattern, where the AbstractIn-
terface applies to all methods in a class. This is equivalent
to what Woolf calls an Abstract Class pattern. Referring
back to Figure 1 from our earlier discussion in section 2.2,
we can see that the core concept is to create a family of sub-
classes with a common abstract ancestor. We can express
this in ρ-calculus as:

Objectifier : [li : Bi
i∈1...n],

AbstractInterface(Objectifier, li
i∈1...n),

ConcreteObjectifierj <: Objectiferj∈1...m,
Client : [obj : Objectifier]

Objectifier(Objectifier, ConcreteObjectifierj
j∈1...m, Client)

(11)

5.3. Object Recursion

We briefly described Object Recursion in section 2.2,
and gave its class structure in Figure 2. We now show that
this is a melding of the Objectifier and RedirectInFamily
patterns, as illustrated in Figure 5. The annotations indi-
cate which roles of which patterns the various components
of Object Recursion play. A formal EDP representation is:

Objectifier(Handler,Recurseri
i∈1...m, Initiator),

Objectifier(Handler, Terminatorj
j∈1...n, Initiator),

Initiator �m obj.handleRequest,
obj : Handler,

RedirectInFamily(Recurser,Handler, handleRequest),
!RedirectInFamily(Terminator,Handler, handleRequest)

ObjectRecursion(Handler,Recurseri
i∈1...m,

T erminatorj
j∈1...n, Initiator)

(12)

5.4. ExtendMethod

The ExtendMethod EDP is used to extend, not replace,
the functionality of an existing method in a superclass. Fig-
ure 6 shows the structure of such a pattern, illustrating the
use of the abstraction super. A formal definition can be
given by:

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()

preHandleRequest()

postHandleRequest()

handler

successor

*

this.preHandleRequest();

successor.handleRequest();

this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Objectifier:ConcreteObjectifierA

Objectifier:ConcreteObjectifierB

RedirectInFamily:Redirecter

Objectifier:Objectifier

RedirectInFamily:FamilyHead
Objectifier:Client

Figure 5. Object Recursion, annotated to
show roles

OriginalBehaviour

Operation()

ExtendedBehaviour

Operation() added behaviour...

OriginalBehaviour::Operation();

added behaviour...

Figure 6. ExtendMethod class structure

OriginalBehaviour : [li : Bi
i∈1...m, operation : Bm+1],

ExtendedBehaviour <: OriginalBehaviour,
eb : ExtendedBehaviour,

eb.operation �m super.operation

ExtendMethod(OriginalBehaviour,
ExtendedBehaviour, operation)

(13)

5.5. Decorator

Now we can finally produce a pattern directly from the
GoF text, the Decorator pattern. It is simple enough to be
composed from the ground up, illustrating our technique of
using fully formal methods entrenched in ς- and ρ-calculus
coupled with the elemental design patterns catalog to create
rich and conceptually true formal descriptions of useful de-
sign patterns. It is complex enough, however, to present a
bit of a challenge, adding a bit of behavioural elegance to a
primarily structural pattern.

Figure 7 is the standard class diagram for Decorator. Fig-

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

Component

operation()

ConcreteDecoratorB

operation()

addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();

addedBehaviour();

Figure 7. Decorator class structure

Component

operation()

ConcreteDecoratorB

operation()

addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();

addedBehaviour();

ExtendMethod:OriginalBehaviour

ObjectRecursion:Recurser

ExtendMethod:ExtendedBehaviour

Object Recursion:Terminator

Object Recursion:Handler

Figure 8. Decorator annotated to show EDP
roles

ure 8 shows the same diagram, but annotated to show how
the ExtendMethod and Object Recursion patterns interact.
Again, we provide a formal definition:

ObjectRecursion(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,any),

ExtendMethod(Decorator, ConcreteDecoratorBk
k∈1...o,

operationk∈1...o
k

),

!ExtendMethod(Decorator, ConcreteDecoratorAl
l∈1...p,

operationl∈1...p
l

)

Decorator(Component,Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,

ConcreteDecoratorBk
k∈1...o,

ConcreteDecoratorAl
l∈1...p,

operationk∈1...o+p
k

)
(14)

The keyword any indicates that any object of any class
may take this role, as long as it conforms to the definition
of Object Recursion.

6. Discussion

Consider what we have just done - we have created a
formally sound definition of a description of how to solve a
problem of software architecture design. This definition is
now subject to formal analysis, discovery, and metrics, and,

following our example of pattern composition, can be used
as a building block for larger, even more intricate patterns
that are incrementally comprehensible. At the same time,
we believe we have retained the flexibility of implementa-
tion that patterns demand. Also, we believe that we have
retained the conceptual semantics of the pattern, by intelli-
gently and diligently making precise choices at each stage
of the composition. Furthermore, by building this approach
on an existing denotational semantics for object oriented
programming we continue to be able to process the same
system at an extremely low level. Cohesion and coupling
analysis[5, 14, 15, 16, 27], slice metrics production[17, 23],
and other traditional code analysis techniques[7, 9, 24] are
still completely possible within the ρ-calculus. We have
provided the link between patterns, as conceptual entity de-
scriptions, to the formal semantics required and used by
compilers and other traditional tools, without losing the
flexibility of implementation required by the patterns. We
do not, however, see an explicit need to always resort to
the full ρ-calculus for all analysis. One of the key contri-
butions of this system is that the practitioner can choose on
which level to operate, and perform the analyses and tasks
which are suitable without losing the flexibility of integrat-
ing other layers of analysis at a later date. Most importantly,
we have created a system which enables the analysis of ex-
isting source code to extract the architecture, expressed as
design patterns. Such analysis will be enabled by a toolset
currently under production, the System for Pattern Query
and Recognition (SPQR), which allows for design patterns
to be found in existing C++ code.

The future research possibilities range across the full
spectrum from formal analysis through human comprehen-
sion assistance, much as the ρ-calculus and elemental de-
sign patterns do, including the educational use of EDPs,
support for refactoring, and comprehension of code during
maintenance.

Education of software design best practices is problem-
atic, since the student is being given solutions to prob-
lems they likely have never encountered. The solutions fre-
quently seem overly cumbersome and are quickly forgotten.
By providing the student with small, comprehensible steps
in the EDP system, they can quickly see the incremental
pieces that solve the components of a larger problem. This
provides a context in which they can learn effectively. Sim-
ilarly, refactoring is frequently approached as a series of
small, well-formed steps in transforming code. We have
provided a strong foundation on which to analyze existing
code, and on which to provide assistance during the refac-
toring process.

Code comprehension, our initial driving problem, looks
to benefit the most from our research. Revealing hidden
clues of design and behaviour of a system to an engineer is
expected to greatly increase the efficiency of practical work-

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

ing comprehension, allowing for effective maintenance of
the system. The discovery process is fully automatable, us-
ing a system such as SPQR, and should provide a large ben-
efit at a minimum of cost.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag New York, Inc., 1996.

[2] C. W. Alexander. Notes on the Synthesis of Form. Oxford
Univ Press, 1964. Fifteenth printing, 1999.

[3] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall,
1997.

[4] J. Bosch. Design patterns as language constructs. Journal of
Object Oriented Programming, 1(2):18–52, May 1998.

[5] L. Briand and J. Daly. A unified framework for cohesion
measurement in object-oriented systems. In Proc. of the
Fourth Conf. on METRICS’97, pages 43–53, Nov. 1997.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented System Architecture: A System of
Patterns. John Wiley & Sons, 1996.

[7] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Transactions on Software Engi-
neering, 20(6):476–493, June 1994. cohesion/LCOM.

[8] J. Coplien. C++ idioms. In Proceedings of the Third Euro-
pean Conference on Pattern Languages of Programming and
Computing, July 1998.

[9] S. Demeyer, S. Ducasse, and O. Nierstrsz. Finding refactor-
ing via change metrics. In Proceedings of the conference on
Object-oriented programming, systems, languages, and ap-
plications, pages 166–177. ACM Press, nov 2000.

[10] A. H. Eden. Precise Specification of Design Patterns and
Tool Support in their Application. PhD thesis, Tel Aviv Uni-
versity, Tel Aviv, Israel, 1999. Dissertation Draft.

[11] G. Florijn, M. Meijers, and P. van Winsen. Tool support
for object-oriented patterns. In M. Askit and S. Matsuoka,
editors, Proc. of the 11th European Conf. on Object Oriented
Programming - ECOOP’97. Springer-Verlag, Berlin, 1997.

[12] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, 1995.

[14] M. Hitz and B. Montazeri. Measuring coupling and cohesion
in object-oriented systems. In Proceedings of ISACC’95,
pages 10–21, Insitut für Angewandte Informatik und Infor-
mationssysteme, Uni versity of Vienna, Rathaustraße 1914,
A-1010 Vienna, Austria, 1995.

[15] B.-K. Kang and J. M. Bieman. Design-level cohesion
measures: Derivation, comparison, and applications. In
Proc. 20th Intl. Computer Software and Applications Conf.
(COMPSAC’96), pages 92–97, Aug. 1996.

[16] B.-K. Kang and J. M. Bieman. Using design cohesion to
visualize, quantify and restructure software. In Eighth Int’l
Conf. Software Eng. and Knowledge Eng., SEKE ’96, June
1996.

[17] S. Karstu. An examination of the behavior of slice-based co-
hesion measures. Master’s thesis, Minnesota Technological
University, 2999.

[18] B. B. Kristensen. Complex associations: abstractions in
object-oriented modeling. In Proc of the ninth annual con-
ference on Object-oriented programming systems, language,
and applications, pages 272–286. ACM Press, 1994.

[19] S. Meyers. Effective C++. Addison-Wesley, 1992.
[20] I. Moore. Automatic inheritance hierarchy restructuring and

method refactoring. In Proc. of the eleventh annual confer-
ence on Object-oriented programming systems, languages,
and applications, pages 235–250. ACM Press, 1996.

[21] M. Ó Cinnéide. Automated Application of Design Patterns:
A Refactoring Approach. Ph.D. dissertation, University of
Dublin, Trinity College, 2001.

[22] W. F. Opdyke and R. E. Johnson. Creating abstract super-
classes by refactoring. In Proc. of the Conf. on 1993 ACM
Computer Science, page 66, 1993. Feb 16-18, 1993.

[23] L. M. Ott. Using slice profiles and metrics during soft-
ware maintenance. In Proceedings of the 10th Annual Soft-
ware Reliability Symposium, Denver, June 25-26, 1992, June
1992.

[24] L. M. Ott and J. J. Thuss. Slice based metrics for estimating
cohesion. In Proceedings of the IEEE-CS International Soft-
ware Metrics Symposium, Baltimore, May 21-22 1993, May
1993.

[25] W. Pree. Design Patterns for Object-Oriented Software De-
velopment. Addison-Wesley, 1994.

[26] D. Riehle. Composite design patterns. In Proceedings of
the 1997 ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages and applications, pages 218–
228. ACM Press, 1997.

[27] M. H. Samadzadeh and S. J. Khan. Stability, coupling and
cohesion of object-oriented software systems. In Proc. 22nd
Ann. ACM Computer Science Conf. on Scaling Up, pages
312–319, Mar. 1994. Mar 8-10, 1994.

[28] J. M. Smith and D. Stotts. Elemental design patterns: A link
between architecture and object semantics. Technical Report
TR-02-011, Univ. of North Carolina, 2002.

[29] J. M. Smith and D. Stotts. Elemental design patterns: A log-
ical inference system and theorem prover support for flexible
discovery of design patterns. Technical Report TR-02-038,
Univ. of North Carolina, 2002.

[30] R. Stansifer. The Study of Programming Languages. Prentice
Hall, 1995.

[31] B. Woolf. The abstract class pattern. In N. Harrison,
B. Foote, and H. Rohnert, editors, Pattern Languages of Pro-
gram Design 4. Addison-Wesley, 1998.

[32] B. Woolf. The object recursion pattern. In N. Harrison,
B. Foote, and H. Rohnert, editors, Pattern Languages of Pro-
gram Design 4. Addison-Wesley, 1998.

[33] W. Zimmer. Relationships between design patterns. In J. O.
Coplien and D. C. Schmidt, editors, Pattern Languages of
Program Design, pages 345–364. Addison-Wesley, 1995.

Proceedings of the 27 th Annual NASA Goddard/IEEE Software Engineering Workshop (SEW-27’02)
0-7695-1855-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

