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‘‘I h a w  tasted eggs, certainly,” said Alice, who 
was a very truthful child; “but little girls eat eggs 
quite as much as serpents do, you know.” 

“I don’t believe it,” said the Pigeon; “but if they 
do, why, then they’re a kind of serpent: that’s all I 
can say.” 

-Lewis Carroll 

Absiraci. Our goal is to demonstrate the feasibil- 
ity of an autonomous learning agent by developing 
means to  learn and employ concepts in a primitive 
machine intelligence which must operate in a real- 
time, uncertain (noisy) environment. This paper re- 
ports on the first steps towards such an agent: the 
development of an  agent, Alice, who starts out with 
only a primitive set of concepts-corresponding to  
perceptible attributes of objects in the environment 
and to  her own utility function-and who generates 
a conceptual structure using cognitively plausible 
rules of concept formation and refinement, abstract- 
ing from the immediate attributes of the mushrooms 
she finds and their longer-term impact on her util- 
ity, in a goal-driven manner. The concept formation 
rules we have developed are more conservative than 
such standard methods of concept formation as ver- 
sion space methods and ID3. We suggest that  this 
caution offers a competitive advantage in difficult 
environments. 
1 Introduction 

Much effort in artificial intelligence has gone into 
finding ways of producing smart assistants for hu- 
mans, automated support for human problem solv- 
ing; indeed, the expert systems which implement 
such assistance occupy a central place in the aca- 
demic and industrial environments in which artifi- 
cial intelligence flourishes. However, recent interest 
in autonomous intelligence-an intelligence which, 
once unleashed, does not depend upon continuous 
human aid and comfort-has grown significantly. 
On the one hand, intelligence of the dependent 
variety has revealed some inherent weaknesses- 
especially its brittleness in the face of novelty. On 
the other hand, Rodney Brooks’ “Creatures” have 
demonstrated the possibility of a more robust, au- 
tonomous intelligence-if also a more representa- 
tionally constrained intelligence (Brooks, ‘Intelli- 
gence without Representation,’ 1991). We agree 
with Brooks that in order to  demonstrate auton- 
omy we should attack intelligence from the ground 
up, by developing means of responding to the world 
starting from a primitive state. We disagree, how- 
ever, that representations are themselves unneces- 
sary, and we assert that a less primitive intelligence 
will be achievable only when an agent’s representa- 
tions can adapt t o  a dynamic environment. 

In this paper we introduce Alice, who, using cog- 
nitively plausible rules of abstraction and special- 
ization, can conceptualize her environment, learn- 
ing which objects go together in a class and which 
of those classes are dangerous and which others ben- 
eficial. Her rules of concept formation allow her to 
build, in a goal-sensitive way, a synchronic (semantic 
associative) network for identifying and associating 
classes of objects. She is also able to generate di- 
achronic (causal) links relating these concepts with 
others and with outcomes (utilities) in Bayesian net- 
works, allowing her to anticipate the effects of her 
actions and so make intelligent plans. 
2 Desiderata for Autonomous Agency 

The most basic requirement for an autonomous 
agent is that  it should be able t o  learn about its 
world. Without inductive learning there is little 
chance that an agent will be able to respond a p p r e  
priately to a complex, dynamic and noisy environ- 
ment. As autonomous agents must fend for them- 
selves, there should be no assumption that the world 
be divided neatly into a set of “training” cases and 
a set of “test” cases. Rather, one must be prepared 
to  respond to  unexpected environmental demands a t  
any time; therefore, incremental learning should be 
preferred, allowing one’s accumulated learning, at 
whatever state of readiness, to  be deployed a t  once. 
Also, one ought to  take advantage of whatever infor- 
mation comes one’s way, a t  any time-i.e., the au- 
tonomous agent should be devoted to  lifetime learn- 
ing. In order t o  ensure that  what is being learned 
is maximally useful, the learning processes should 
themselves be sensitive t o  the complex of goals cur- 
rently a c t i v e o r ,  in simpler implementations, to  the 
agent’s current utility function-i.e., goal-directed 
learning (Ram and Hunter, 1992). This last point 
implies that  in the context of concept formation the 
learning will lie conceptually between supervised and 
unsupervised learning: that  is, there will be no ex- 
ternal teacher punishing the agent for misclassifica- 
tion, however the utility function (or surrogate) re- 
sponds to  the agent’s actions and the environment so 
that concept formation is based upon goal-relevant 
outcomes, rather than merely upon the intrinsic sim- 
ilarities of objects. 

An autonomous agent should satisfy the following 
preconditions: 

Primit ive  Inducfion: The agent should be ca- 
pable of inductive learning with little or no 
background knowledge. This is a vital feature 
for avoiding brittleness when confronted with 
unanticipated environments (see Korb, forth- 
coming). 

Generalization and Specializaiion: The agent 
should have means for building a conceptual 
hierarchy by generalizing (abstracting) from ex- 
amples and by specializing (splitting concepts) 
when necessary. 

Pragmafics: The agent should be responsive to 
changing conditions in the environment, espe- 
cially changes in the availability of time and 
other resources. 
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Incremental Learning: The agent should be able tion. Alice’s concept formation rules support both 
to  take advantage of information when it arrives of these. Suppose Alice eats a mushroom which sub- 
in order to be able to respond to any immediate sequently increases her utility. She will want to form 
demands of the environment. a concept which records this fact, so that she may 

repeat the experience. When she ate the mushroom 
Learning: Learning strategies all of her detectors will have been in some state or 

be responsive to the agent’s changing other; some will have recorded relevant features of 
goals and through them to the agent’s the mushroom (say, that it is blue and plain), others 
ing environment. irrelevant features of the mushroom (that it is small) 
Defeas;b;l;fy: The agent should be able to re- and others irrelevant features of the environment a t  
vise its beliefs when conditions have changed or large (for example, nearby sounds). Alice’s task, of 
when it has made some inductive error. course, is to identify the relevant kind of mushroom 

using the features that are predictive. She does this 
Uncerfainfy: The agent should be able to learn by taking a subset of features as salient and attempt- 
from noisy data  when the noise is due either to ing to identify other mushrooms that share those 
measurement error or to  a stochastic environ- features and, importantly, the utility outcome. Such 
ment. methods are detailed below. 

The second variety of concept formation rule is 
specialization. The main rule we are using of this 

Alice begins her life with no information about Won- tYPe is the exception rule (much discussed by Hol- 
&land and only a few rules with which to cop- land et d., 1986): if a prediction f a i l s s a y  a mush- 
but also with an inherent curiosity about the mush- room in a category thought to be nourishing turns 
rooms and such around her and an inability to avoid Out to  be harmful-look around for a feature Of this 

around and sampling them. ~ l i ~ ~  has a mushroom that distinguishes it from others in the 
number of detectors (primarily visual) that allow her Assuming Such a feature is found, a sub- 
to  discover a variety of mushrooms (e.g., color and category is created with that  newly noticed feature 
shape detectors) and a size detector that can aid her identified as a salient distinguishing attribute of the 
in distinguishing mushrooms from, say, duchesses subcategory and with a new diachronic link identi- 
and Cheshire cats. She also has a utility detector fying its after-effects. 
that allows her to know the effect of certain actions These are the basic tools which we have thus far 
(such as eating blue mushrooms or getting too close Provided Alice. She also has asimPle set of effectors 
to duchesses). ~ ] i ~ ~ ’ ~  curiosity is implemented as for a simple environment: she has the ability to move 
a to discover the utility of various acts and to one of eight adjacent cells and an eating effector 
to around and investigate her environment, that allows her to munch on any object in her current 
The curiosity goal, while never entirely disappear- 
ing, is subsequently largely displaced by the more es, although limited, allow for a nat- 
mature goal of maximizing her utility, as ural extension to  abilities which may satisfy the 
a child’s early general learning gives way to desiderata of section 2. In particular, whereas Alice 
more incomeoriented learning later in life. currently generalizes and specializes concepts based 

While satisfying these goals, ~ l i ~ ~  builds a repre- upon a deterministic reading of her environment, we 
sentation of her environment. ~ ~ l l ~ ~ i ~ ~  Holland, et anticipate introducing statistical criteria for her con- 
al. (1986) Induction, this learning has two aspects. cept formation rules in the future. For examplet 
The first is the formation of ]inks from her environment may include only a few blue mush- 
detectors to concepts; e.g., Alice may decide that rooms that are (decreasing utility) among 
blue, small and spotted objects are a kind. The sec- the many that are beneficial (increasing utility), and 
ond aspect is the development of diachronic links her Perceptual equipment may be insufficient for her 
which describe what happens given the instantiation to be able to detect any distinguishing feature. At 
of some combination of concepts (including effector Present Such a situation would lead to a collapse 
concepts). For example, Alice may discover that if of her ability to develop conceptual structure, but 
she eats a blue spotted mushroom (instantiating the statistically based rules of concept formation are 
nodes of blue, spotted mushrooms and of eating) planned. 
then she will feel sick. Indeed, it is the very discov- 
ery of such an effect that leads to the formation of 
the concept-it is the relevance of constellation Our intention in developing Alice’s architecture, 

gers the goal-driven learning ofconceptua~ structure Principles of induction described in Holland, et al. 
(see M. dedardins, 1992) (1986). Their goal was to characterize the necessary 

~ ~ ] l ~ ~ d ,  et al. make clear, a conceptual hi- features which any intelligent agent capable of Iearn- 
erarchy (or, a default hierarchy) must both aggre- ing about its “ronment must have. As a prelim- 
gate environmental states into categories when tiley inary to any more sophisticated learning, the agent 
are appropriately similar and refine such categories needs to be able to form concepts that are indica- 
intosubcategories in response to failed tive of the environment in which it is placed. Hence 
That is, we may say, any inductive system which can the principles of generalization and specialization. 
dynamically build a conceptual structure must sat- Any adequate methods Of concept formation must 
isfy the principles of generalization and specializa- abide by these principl--that is, they must pro- 

3 Alice’s Architecture 

ab 

4 Methods of Concept Formation 

of features to a goal (maximizing utility) that trig- as described above, was to the general 
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vide means of generalizing and specializing concepts, 
whether explicitly or implicitly. Indeed, the classical 
models of concept formation do provide such means, 
and it is most revealing to compare how Alice clas- 
sifies mushrooms with how version space methods 
and ID3 would proceed. 

Version-space methods (Mitchell, 1977) look a t  
positive and negative instances and attempt to  de- 
fine convex (rectangular) areas of the instance space 
that capture positive instances and avoid negative 
instances. They proceed explicitly by generalizing 
to  cover positive instances and specializing to re- 
move negative instances as they are presented (i.e., 
incrementally). Thus given the following instances 

color .... red . . . . .g reen...blue....red..... red 
spots .... 0 ....... 1. ...... 2 ....... 2 . . . . . . .  3 
utility ..+ 1 ......- l......-1......+1...... +1 

a version-space algorithm readily discovers that red 
mushrooms are nourishing (have positive utility). 
The  underlying assumption that the concepts are 
convex is useful, being commonly true; furthermore, 
some simplifying assumption is certainly necessary, 
since the space of possible concepts is exponential. 
This and related methods, however, are insufficiently 
flexible: i t  is difficult to  modify the convexity as- 
sumption when evidence grows that it is not work- 
ing; and they are intolerant of noisy data. 

ID3 (or C4.5) produces very compact decision 
(classification) trees using an information-theoretic 
criterion for selecting splitting attributes (see Quin- 
lan, 1983). This and other means of generating deci- 
sion trees and graphs (e.g., Oliver, Dowe, and Wal- 
lace, 1992) often produce near optimal means for 
categorizing objects. Furthermore, they do work ef- 
fectively with noisy data. From the point of view 
of Alice’s prospective environment, though, these 
techniques have a number of drawbacks. Most no- 
tably, they require that  a very large sample of ob- 
jects be available a t  the beginning as training data. 
Although they can be modified to  deal with new 
data, they are not designed for incremental learning 
problems. 

In section 6 below we will compare these methods 
with Alice on some sample cases. First, though, we 
must describe Alice’s concept formation in greater 
detail. 
5 Marking Salient Attributes 

Alice’s concept formation uses the Marking Salient 
Attributes (MSA) technique. Alice begins by eat- 
ing and recording the utility of a number of mush- 
rooms. Let’s assume her first mushroom is nour- 
ishing. As soon as she eats a discordant mushroom 
(i.e., a harmful one), she marks all of the attributes 
of this new mushroom that distinguish it from the 
nourishing ones. As each mushroom is added these 
distinguishing marks are added. For example, 

mushroom ............... 1 ....... 2 . . . . . . .  3 
color (red blue). ..... .r(3). .. .r(3). .. .b(l 2) 
texture (spots plain) .. s(3) ....p....... p (1) 
shape (circ irr) ....... c ....... c....... c 
utility ................ + I . . .  ...+ 1 ......- 1 

The numbers in the parentheses indicate which 
discordant mushrooms this attribute distinguishes. 
Thus, the texture mark indicates the attribute value 
plain distinguishes discordant mushroom 3 from 1, 
while color distinguishes mushroom 3 from both 1 
and 2. 

Clearly, as Alice encounters more and more mush- 
rooms some simplification is necessary. This is 
done by two techniques: reduction and combina- 
tion. After Alice has encountered sufficiently many 
mushrooms (including some discordant ones) she at- 
tempts a reduction. For example, mushroom 3 has 
two attributes that  distinguish i t  from mushroom 
1-but only one is necessary. The rule Alice employs 
is to  retain the mark for the longer list. This serves 
to retain as salient those attributes which have the 
most discriminatory power. Thus the mark (1) will 
be removed from attribute value plain of 3 and so too 
will its corresponding mark on mushroom 1 yielding: 

mushroom. .............. 1 ....... 2....... 3 
color (red blue) ....... r(3)....r(3). ... b ( l  2) 

shape (circ irr) ....... c ....... c . . . . . . .  c 
utility ................ + 1 ......+ 1......- 1 

Having reduced the total set of marks to a salient set, 
Alice can now combine nodes. A mushroom node 
will combine with a second concordant node (i.e., 
they will be classed together) if the second node has 
all the same salient attributes as the first node. In 
the above case mushrooms 1 and 2 combine, produc- 
ing 1*: 

mushroom ............... 1*(1 2).....3 
color (red blue) ....... r(3) ........ b(l 2 )  

shape (circ irr) ....... c ........... c 
utility ................ + 1 ..........- 1 
where “-” means ‘don’t care’; shape is retained for 
1* as a non-salient attribute in common; while util- 
ity is always retained-for it is the driving force be- 
hind all categorization. 

This technique of course loses information- 
namely the ‘don’t care’ attributes of combined 
nodes. But losing what is apparently irrelevant in- 
formation is, in fact, the main goal of all methods of 
abstraction. 

Exception specialization can be seen when mush- 
room 4 arrives, which, after marking and reduction, 
gives us: 

mushroom ............... lz(1 2) .... 3 ........ 4 
color (red blue).... ... r(3) ....... b(1) ..... r 
shape (circ irr) ....... c(4) ....... c ........ i(l) 
utility ................ + 1 .........- 1. ......- 1 
Alice expects mushroom 4 to  b e  nourishing as it 
matches all the salient attributes of 1. She is sur- 
prised when she eats it and finds it is harmful. To 
deal with this she must find an attribute that was 
previously non-salient, but may be made salient as 
a newly distinguishing feature. The  marking tech- 
nique finds this attribute (shape) and marks it. Now 

texture (spots plain) .. s .......p....... P 

texture (spots plain) ..-........... P 

texture (spots plain) . . . . . . . . . . . . . . . . . . . . . .  P 
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two attributes are salient for concepts I* and 4- 
and red, irregular mushrooms are kept distinct (as 
a separate concept) from red, circular mushrooms. 
Alice proceeds eating mushrooms and filling in their 
salient features. Three things can happen to a new 
mushroom: It may match some existing concept and 
become (and remain) incorporated within it; it may 
match an existing concept, but end up requiring ex- 
ception specialization; or, it may be added to  the 
conceptual hierarchy as a new concept in its own 
right, with the possibility of subsequent combina- 
tion. 
6 Comparative Results 

MSA was run initially on some simple test cases to  
compare its approach with classical concept forma- 
tion. An example is the following test case of five 
mushrooms: 

green blue  red yellow 
+---------+---------+---------+---------+ 

c i r c l  - I N 2  I - I - I 

oblong I - I - I N3 I - I 
+---------+---------+---------+---------+ 

irr I P1 I + I P4 1 PS 1 

The sequence of mushrooms is indicated as Pn and 
Nn, reflecting whether the nth mushroom produced 
a positive or negative change in utility. The +/- 
signs indicate what Alice is predicting after having 
sampled all five mushrooms. Alice has combined 
mushrooms (3 1) (3 3) and (3 4) [identified by (row 
column)] into a single concept with the shape at- 
tribute marked as salient, since shape is all that is 
needed to  distinguish the negative from positive in- 
stances here. In effect, Alice is operating with three 
concepts at this po in tsp l i t t ing  on the shape of 
mushrooms. This is, of course, similar to what we 
get with version space methods and ID3. However, 
adding a sixth test mushroom we get: 

+---------+---------+---------+---------+ 

+---------+---------+---------+---------+ 

green b l u e  red y e l l o v  
+---------+---------+---------+---------+ 

c i r c l  - I N 2  I - I - I 
+---------+---------+---------+---------+ 

oblong I I P6 I N3 I I 
+---------+---------+---------+---------+ 

irr I P1 I + I P4 I P5 I 
+---------+---------+---------+---------+ 

Mushroom 6 forces the color attribute into salience 
together with the shape attribute vis-a-vis the third 
and sixth mushroom. Since mushrooms in positions 
(2 1) and (2 4) do not match either of these on both 
attributes, they do not match any of the current 
mushroom concepts; therefore, Alice does not pre- 
dict whether they are beneficial or harmful. Ordi- 
nary version space methods break down altogether 
with such examples, since the positive concept can 
only be a disjunction of convex regions; however, 
they can be modified to discover subconcepts by 
splitting the training data  so as to allocate posi- 
tive instances to convex regions only. In that case, 

they may produce predictions for the unexamined 
instances, classifying (2 1) as positive and (2 4) as 
negative, for example. 

This example highlights a major difference be- 
tween Alice’s concept formation and traditional 
methods: namely, Alice’s conservativeness. Alice 
certainly generalizes positive instances into classes 
that cover unexamined cases (exhibiting inductive 
generalization), but she is nonetheless far less prone 
to over-generalization than the competing algo- 
rithms. We view this as a potential competitive ad- 
vantage in dangerous environments; it  is no good 
considering green oblong mushrooms, which have 
not been sampled, to be 3 safe as blue oblong mush- 
rooms, which have been. 

We have extended our experimental results to  in- 
clude some of the static test cases from the UC Irvine 
machine learning database. Those cases are mostly 
designed to  test the optimal performance of a learn- 
ing algorithm, measured by accuracy-i.e., the per- 
centage of correct predictions. Since it is an impor- 
tant feature of Alice that she can refrain from predic- 
tion when that is prudent, we prefer to  measure her 
performance in terms of ml:aMzty-i.e., 100% minus 
the percentage of failed predictions. For competi- 
tive learning algorithms reliability and accuracy are 
identical. Thus far, we have obtained these results:’ 

Test MSA/R ISA/A AQR ID3 C4.5 C4.5 
Trees  Rules 

Monks 1 99 .1  96 .3  95 .9  98 .6  75 .7  100 
Monks 2 74 .3  65.5 79 .6  67 .9  65 .0  65 .3  
Monks 3 9 4 . 4  88 .9  8 7 . 0  94 .4  9 7 . 2  96 .3  

98 .3  98 .5  Mushrooms 99.2  95.9 -- -- 
Although Alice was not designed with such static en- 
vironments in mind, she has done quite a creditable 
job here. She has in all but  one case outperformed 
her competitors on most cases, when measured by 
reliability; and she remains competitive when mea- 
sured by accuracy. Thus, we suggest that  in many 
realistic environments-where an unwarranted pre- 
diction can be much worse than no prediction-Alice 
will outperform alternative methods. 

Interpretation 
Alice is by her nature capable of forming concepts 
of arbitrary geometric complexity in the instance 
space-although her conceptual structure may be- 
come uneconomic if too many attributes are forced 
into salience. In this flexibility, and in the natu- 
ralness of her formation rules, she appears to of- 
fer some advantage over competing paradigms for 

MSA/R is the reliability score, while MSA/A is accuracy. 
AQR is one of the AQnn family of version-space methods; 
ID3 and C4.5 are Quinlan’s information-theoretic algorithms 
for building classification trees. Results for AQR are from 
Kreuziger, et al. (1991); results for ID3 are from the upda te  
file at the UC Irvine database; the Monks results for C4.5 are 
from Cameron-Jones and Quinlan (1993); the mushroom test 
results for C4.5 arc from Van Horn and Martinez (1993). In 
order to have comparable results we have used Van Horn and 
Martinez’s training regime for Alice in the mushroom test- 
i.e., we have used 200 randomly selected training a e s  and 
7,924 test cases. For all tests we turned off Alice’s learning 
ability after the training -. 
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concept formation. Alice shows a praise-worthy re- 
straint in her inductive generalizations implicit in 
concept formation, yet she is not so restrained that 
she cannot achieve quite good accuracy scores on 
standard tests. 

Alice’s conservativeness, of course, can also be 
a disadvantage when the environment demands a 
prediction-that is, an action that is best based 
upon a prediction which Alice is reluctant to  give. 
For example, suppose she is near expiration due to  Brooks, R. (1991) ‘Intelligence without Representa- 
hunger and must take a chance on one or another tion,’ Artificial Intelligence 47: 139-159. 
of two mushrooms without predicted values. A nat- Cameron-Jon-, R.M. and Quinlan, J.R. (1993) ‘First 
ural approach for dealing with such circumstances Order Learning, Zeroth Order Data,’ in c. b w k  H. 
is to  extend Alice’s predictive abilities to  incorpo- Liu, and N. Foo (eds.) A I  ‘93 (pp. 316-321). World 
rate a distance metric in the attribute space. Al- Scientific. 
ice could then either select the class closest to  the desJardins, M. (1992) PAGODA: A Model f o r  Auto- 
unknown mushroom or use a weighted average of nomous Learning in Probabilistic Domains. Report 
nearby classes for making her prediction. UCB/CSD 92/678, Computer Science Division, EECS, 

UC Berkeley. 
Holland, J.H. and Holyoak, K.J. and Nisbett, R.Eand 

This Paper reports on the very early stages of re- Thagard, P.R. (1986) Induction. MIT. 
search on primitive concept formation and primitive Kerb, K.B. (forthcoming) ‘Inductive Learning and 
induction. The next experimental step is to  exam- Defeasible Inference,’ in The Journal of Ezperimental 
ine the performance of Alice in a rich testing en- and Theoretical Artificial Intelligence. 
v h ” t  (RALPH) developed a t  uc Berkeley for Korb, K.B. and Dowe, D.L. (forthcoming) ‘The 

1992). That  environment allows for noisy domains ~ ~ ~ ~ l l i ~ ~ ~ ~ ~ , ~  in preparation, 
and time-constrained problem solving. We shall si- ~ ~ ~ ~ ~ i ~ ~ ~ ,  J., H ~ ~ ~ ,  R, and wenzel, w .  (1991) 
multaneously test alternative machine learning al- ‘comparison of Inductive ~~~~i~~ programs,* in The 
gorithms under like constraints (including some we  MONK'^ Problems: A perfomance ~~~~~i~~~ of 0~ 
haven’t yet examined experimentally, such as Oliver, femnt h a m i n g  Algorithms, technical report CMU-CS- 
Dowe, and Wallace, 1992). We also plan to  continue 91-197, pp, 59-80, 
using problems from the UC Irvine archive; how- 

ing environments. While the classical supervised 
techniques are effective in the static environments 
for which they were developed, we speculate that- 
and have some modest evidence that-they will be 
far less effective than Alice in more demanding and 
less predictable problem domains. 
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8 Conclusion 
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pragmatically constrained and dynamically chang- 

tel,igence, 
Oliver, J., Dowe, D. and Wallace, C.S. (1992) ‘In- As she stands, Alice already incorporates a fair ferring Decision Graphs using the Minimum Message 

Conference, 
Ram? A. and Hunter, L. (lgg2) ‘The Use Of Explicit 

Procedures and their Application to Chess End Games,’ 
(eds.) 

old judgments by way of exception specialization, FoO (edS.1 AI ’93 (PP. 346-3551. World Scientific. 

366 


