
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998 1055

Guiding Goal Modeling Using Scenarios
Colette Rolland, Carine Souveyet, and Camille Ben Achour

Abstract—Even though goal modeling is an effective approach to requirements engineering, it is known to present a number of
difficulties in practice. The paper discusses these difficulties and proposes to couple goal modeling and scenario authoring to
overcome them. Whereas existing techniques use scenarios to concretize goals, we use them to discover goals. Our proposal is to
define enactable rules which form the basis of a software environment called L’Ecritoire to guide the requirements elicitation process
through interleaved goal modeling and scenario authoring. The focus of the paper is on the discovery of goals from scenarios. The
discovery process is centered around the notion of a requirement chunk (RC) which is a pair <Goal, Scenario>. The paper presents
the notion of RC, the rules to support the discovery of RCs and illustrates the application of the approach within L’Ecritoire using the
ATM example. It also evaluates the potential practical benefits expected from the use of the approach.

Index Terms—Goal modeling, scenario authoring, goal discovery.

——————————���F���——————————

1 INTRODUCTION

OAL MODELING is an effective way to identify require-
ments [25]. The argument of goal driven approaches is

that the rationale for developing a system is to be found
outside the system itself, in the enterprise [19] in which the
system shall function. We have applied the goal driven ap-
proach as embodied in the EKD method [4], [17], [20], [30]
to several domains, air traffic control, electricity supply,
human resource management, and tool set development.
Our experience is that it is difficult for domain experts to
deal with the fuzzy concept of a goal. Yet, domain experts
need to discover the goals of real systems. It is often as-
sumed that systems are constructed with some goals in
mind [8]. However, practical experience [2], [9] shows that
goals are not given and therefore the question as to where
they originate from [2] acquires importance. In addition,
enterprise goals which initiate the goal process do not re-
flect the actual situation but an idealized environmental
one. Therefore, proceeding from this may lead to ineffective
requirements. Thus, goal discovery is rarely an easy task.
Additionally, it has been shown [2] that the application of
goal reduction methods [7], to discover the component
goals of a goal, is not as straightforward as the literature
suggests. Our own experience in the F3 [4] and ELEKTRA
[10] projects is also similar. It is thus evident that help has
to be provided so that goal modeling can be meaningfully
performed. This help must: 1) facilitate the work of the do-
main expert by getting over the problem of the fuzzy nature
of goals, 2) help discover goals, and 3) aid in the task of
goal reduction.

Independently of goal modeling, an alternative approach
to requirements engineering, the scenario-based approach, has
been proposed. By capturing examples and illustrations,

scenarios help people in reasoning about complex systems
[24]. Since scenarios describe real situations, they capture
real requirements. However, because they deal with exam-
ples and illustrations, scenarios only provide restricted re-
quirements descriptions which need to be generalized to
obtain complete requirements.

Recently, some proposals have been made to couple goals
and scenarios together. Potts [25] claims that it is «unwise to
apply goal based requirements methods in isolation» and
suggests that they should be complemented with scenarios.
However, he does not make a specific proposal on how this
can be done. Yet other proposals exist which interpret sce-
narios as containing information on how goals can be
achieved [1], [14], [25]. Thus, the goal-scenario combination
has been used to operationalize goals. Yet others look upon
goals as playing a documentation role only. This view is
taken in [6], [15], [18], [23] where a goal is considered as a
contextual property of a use case (integrated set of scenarios)
i.e., it is a property that relates the scenario to its organiza-
tional context. Cockburn [5] goes beyond this view and sug-
gests the use of goals to structure use cases by connecting
every action in a scenario to a goal assigned to an actor. In
this sense a scenario is discovered each time a goal is.

All these views suggest a unidirectional relationship be-
tween goals and scenarios (goal operationalization through
scenarios, scenario discovery from goals). Further, they
contain no proposal to formally track goals nor are there
any methodological guidelines on how to associate goals
with scenarios. Finally, these approaches do not directly
help in discovering/clarifying new requirements. Thus,
they tackle the problems of goal achievement rather than
goal discovery, documentation rather than requirements
description, and scenario structuring rather than require-
ments elaboration, respectively.

In the ESPRIT CREWS project, we propose to couple
goals and scenarios to directly help in the requirements
engineering activity. Thus, our aim is to discover/elicit re-
quirements through goal-scenario coupling. Three charac-
teristics of the proposed approach contribute to the
achievement of this objective:

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� C. Rolland, C. Souveyet, and C. Ben Achour are with the Centre de Recherche
en Informatique, Université de Paris-1 Sorbonne 17, rue de la Sorbonne,
75231 Paris cedex 05, France.
E-mail: {rolland,souveyet,camille}@univ-paris1.fr.

Manuscript received 5 Jan. 1998; revised 3 July 1998.
Recommended for acceptance by R. Kurki-Suonio and M. Jarke.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107461.

G

1056 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

First, a bidirectional goal-scenario coupling: just as goals can
help in scenario discovery, so also scenarios can help in goal
discovery. Thus, the requirements elicitation process can be
organized in two phases: 1) scenario authoring and 2) goal
discovery (see Fig. 1). As each individual goal is discovered,
a scenario can be authored for it. In this sense, the goal-
scenario coupling is exploited in the forward direction,
from goals to scenarios. Once a scenario has been authored,
it is explored to yield goals. This leads to goal discovery by
moving along the goal-scenario relationship in the reverse
direction. The problem of goal discovery mentioned at 2) is,
therefore, tackled here through scenario authoring and sub-
sequent goal identification.

Fig. 1. Overview of the requirements elicitation process.

The second characteristic of the approach is the distinc-
tion between the refinement relationship and the AND/OR
relationships among goals. This leads to an organization of
the collection of requirements as a hierarchy of Require-
ment Chunks (RCs) related through AND, OR, and Re-
finement relationships. A requirement chunk (RC) is defined
as a pair <G, Sc> where G is a goal, and Sc is a scenario. The
RCs and their inter-relationships constitute a system of con-
cepts which we call the requirement chunk model (the RC
model). We propose the refinement relationship under
which starting from fuzzy goals more concrete goals are
discovered. Each of these concrete goals has its own
AND/OR goal hierarchy. Therefore, the problems 1) and 3)
with goal modeling mentioned above are addressed: the
refinement relationship ensures that fuzzy goals are gradu-
ally made more and more clear; goal reduction is possible
through traditional AND/OR structuring of goals.

The third characteristic is the methodological support pro-
vided in the form of enactable guiding rules embodied in a
computer software environment called L’Ecritoire. As a re-
sult, it is possible to guide the requirements elicitation pro-
cess through interleaved goal modeling and scenario
authoring. Whereas rules for scenario authoring can be
found in [3], [8], we propose here a basis for guidance in
goal modeling. There are three kinds of rules, each for de-
termining one of the three kinds of relationships mentioned
above namely, AND, OR, and refinement. Each rule gener-
ates a menu of goals for the requirement chunk Author
(RCA) to evaluate and select. In this way, the drudgery of
goal-menu generation is removed and the engineer has
only to concentrate on the more intellectually demanding
task of goal evaluation and selection.

The Crews-L’Ecritoire approach has been evaluated and
improved through experience gained in the F3 [4] and ELEK-
TRA [10] European ESPRIT projects. The latter contained as
many as 300 RCs. We are now involved in an evaluation of
the approach with industrial partners and in scaling up the

software tool L’Ecritoire to a full working system. To study
stakeholders’ reaction, three one-day workshops on the
Crews-L’Ecritoire approach were held. These were attended
by 52 participants. The overall evaluation of the main aspects
of the approach is encouraging and highlights the four fol-
lowing potential practical benefits:

•� methodological support,
•� tight coupling of requirements and scenarios,
•� requirements tracking from high to low level, and
•� guided mapping from informal to formal scenario

descriptions.

This feedback from participants is reported in Section 5.
The layout of the paper is as follows. The RC model is

described in the next section. The three kinds of rules and
the discovery process are presented in Section 3. The rules
are applied to the CREWS goal-oriented approach through
a Crews-L’Ecritoire session in Section 4. Section 5 deals with
the potential of the approach to overcome some of the
known industrial problems and reports on the industrial
workshops. The concluding section sums up the essential
properties of our approach, and shows how it alleviates the
problems of goal modeling.

2 THE REQUIREMENT CHUNK MODEL

At the core of our approach is the requirement chunk (RC),
defined as the pair <Goal, Scenario>. Requirement chunks
can be assembled together either through composition and
alternative relationships or through refinement relationships.
The former lead to AND and OR structure of RCs whereas
the latter leads to the organization of the RCs as a hierarchy
of chunks at different levels of abstraction. Fig. 2 gives, in
the OMT notation [31], an overview of the RC model.

Fig. 2. Overview of the requirement chunk model.

2.1 The Requirement Chunk
The requirement chunk (RC) is the basic building block of
the requirement chunk model. A requirement chunk is a
pair <G, Sc> where G is a goal and Sc is a scenario. Since a
goal is intentional and a scenario is operational by nature, a
requirement chunk is a possible way of achieving the goal.
We model the requirement chunk (Fig. 2) as a class of ob-
jects which is an aggregate of the goal and scenario classes.
Both goal and scenario are complex objects which are ex-
plained in the following sections.

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1057

2.1.1 The Goal Concept
A goal is defined [22] as “something that some stakeholder
hopes to achieve in the future.” The structure of a goal is
shown in Fig. 3. Clearly, a goal [26] is associated to a verb
and to one or more parameters (multiplicity is shown by a
black dot). It is expressed as a clause with a main verb and
several parameters, where each parameter plays a different
role with respect to the verb. There are four types of pa-
rameters (shown in the grey boxes), some of which have
subtypes. These subtypes are described and illustrated with
the ATM example.

The target (Tar) designates entities affected by the goal.
We distinguish two types of targets, object, and results. An
object (Obj) is supposed to exist before the goal is achieved.
For example in the goal:

‘Take (the receipt)Obj (from the printer)So’,

the target ‘the receipt’ is an object because it exists even
before ‘Take’ is achieved. Results (Res) can be of two kinds
1) entities which do not exist before the goal is achieved
and 2) abstract entities which exist but are made concrete
as a result of goal achievement. For example in the goal
statement:

‘Identify (the user’s choice)Res’,

the user’s choice is the result of the achievement of the goal
‘Identify’.

The two types of direction (Dir), namely source (So) and
destination (Dest) identify respectively the initial and final
location of objects to be communicated. For example, con-
sider the two goals as follows:

‘Read (the validity date of card)Obj (in the card chip)So,’
‘Display (the error message)Obj (to the customer)Dest,’

In the first goal, the source of the validity date of the card is
the card chip, and in the second one, the customer is the
destination of the error message.

Means (Mea) designate entities which act as instruments
using which a goal is to be performed. For example, given
the goal:

‘Provide (cash)Obj (to our bank customers)Dest (with a finger
print based ATM)Mea’,

the finger print based ATM is the means to provide cash.

The manner (Man) defines the way in which the goal is to
be achieved. As modeled in Fig. 3 a manner, when complex,
can be expressed as a goal. Therefore, a goal can be recur-
sively defined. For example the goal statement:

‘Improve (our services)Obj (by providing (cash)Obj (to our
bank customers)Dest (from account)So(with a card based
ATM)Mea)Man’,

comprises a recursive definition of the manner ‘by provid-
ing (cash)Obj (to our bank customers)Dest (from account)So
(with a card based ATM)Mea’ which is itself a goal compris-
ing the verb ‘provide’ and four parameters.

The beneficiary (Ben) is the person (or group of persons)
in favor of whom the goal is to be achieved; for example in:

‘Reduce (the work load)Obj (for the bank staff)Ben’,

the ‘bank staff’ is the beneficiary.

2.1.2 The Scenario Concept
A scenario is “a possible behavior limited to a set of pur-
poseful interactions taking place among several agents”
[22]. Fig. 4 shows that a scenario is composed of one or sev-
eral actions, the combination of actions in a scenario de-
scribes a unique path leading from initial to final states of
agents. Thus, it is the combination of scenarios that de-
scribes the behavior of a complex system of agents. We are
aware that not all the possible behaviors can be expressed
through combinations of scenarios. However, as [5], [27],
among others, we advocate that they are sufficient to ex-
press a majority of the behaviors that are necessary for the
purpose of scenario based goal modeling.

A scenario is characterized by initial and final states. An
initial state attached to a scenario defines a precondition for
the scenario to be triggered. For example, the scenario
‘Withdraw cash from ATM in a normal way‘ cannot be per-
formed if the initial states ‘The user has a card’ and ‘The ATM
is ready’ are not true. A final state defines a state reached at
the end of the scenario. For example, the scenario ‘Withdraw
cash from ATM in a normal way’ leads to the states ‘The user
has cash’ and ‘The ATM is ready’.

As shown in Fig. 4 by the scenario class subtyping, we
distinguish between normal and exceptional scenarios. The
former leads to the achievement of its associated goal
whereas the latter fails in goal achievement. The scenario

Fig. 3. The goal structure.

1058 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

‘Withdraw cash from the ATM by treating the exception of three
invalid code attempts’ is an example of an exceptional sce-
nario with a final state ‘The user has no cash’.

Actions are of two types: atomic and flows of actions.
Atomic actions are interactions from one agent to another
which affect some parameter object (see Fig. 4). An agent and
resource objects may participate into several atomic actions.
The clause ‘The user inserts a card in the ATM’ is an example
of atomic action. Its parameter, ‘a card’ is a resource object,
and it is a communication action which involves two differ-
ent agents ‘The user’ and ‘the ATM’.

Flows of actions are composed of several actions. The
sentence ‘The bank customer gets a card from the bank, then the
bank customer withdraws cash from the ATM’ is an example of
a flow of actions comprising two atomic actions. A flow of
actions can have any one of the following semantics: se-
quence, alternative, repetition, and concurrency.

Alternative and repetition carry flow conditions which
characterise the course of actions of the scenario. In the
sentence ‘if the code is valid, then a prompt for amount is dis-
played by the ATM to the use’, the flow condition ‘if the code is
valid’ identifies a unique case of ATM usage which is de-
scribed in the scenario.

In this paper, we shall use the semistructured textual
form to represent the scenarios associated to requirement
chunks. As shown in Fig. 5, each action of a scenario is ex-
pressed in a separate line as a natural language clause pre-
ceded by a reference number. The formal semantics of natu-
ral language clauses is detailed in [3], [28].

2.2 The Hierarchy of Requirement Chunks
The three types of relationships among requirement chunks
lead to a hierarchical organization of RCs, as illustrated
in Fig. 5.

2.2.1 Composition and Alternative Relationships
The composition and alternative relationships lead to a hori-
zontal AND/OR structure between RCs. These are exten-
sions of AND/OR relationships between goals identified by
a number of researchers, for example in NATURE process
theory [13], KAOS [7], F

3
 [4] and others (e.g., [1], [11], [34]).

AND relationships among RCs (the OMT ‘AND’ asso-
ciation in Fig. 2) link together those chunks that require
each other to define a completely functioning system. The

requirement chunks RC1.1 and RC1.2 in Fig. 5 associated
with the goals, G1.1 and G1.2 are examples of such
chunks. Indeed, in order to ‘Withdraw cash from ATM in a
normal way’ (G1.1) it is necessary for the bank customer to
‘Get a card from the bank’ (G1.2).

RCs related through OR relationships (the OMT ‘OR’ as-
sociation in Fig. 2) represent alternative ways of fulfilling
the same goal. There are, for example, at least three differ-
ent manners to ‘Withdraw cash from ATM’ namely, 1) ‘in a
normal way,’ 2) ‘by treating the exception ‘Invalid card’, and 3)
‘in a normal way with code error correction’. These three man-
ners

1
 are captured in three requirement chunks (RC1.1,

RC.1.1
1
, and RC1.1

2
 in Fig. 5) where the goals correspond to

the same intention (‘Withdraw cash from ATM’) but each
having a different manner.

2.2.2 Refinement Relationship
Abstraction is defined [34] as a mechanism to hide details
in order to focus on essential aspects. Refinement is used in
our approach to describe requirement chunks at different
levels of abstraction. This is modeled in Fig. 2 by the OMT
association ‘Refined by’. As illustrated with the double ar-
rows in Fig. 5, a RC at level i is refined into several RCs at
level i + 1.

Refinement is directed by the scenario part of the re-
quirement chunk. Every interaction in a scenario Sc at level
i is looked upon as a goal to be achieved at level i + 1. For
example, the chunk RC1 presented in Fig. 5, is refined by
three requirement chunks2 RC1.i, one for each action in the
scenario Sc1. The refinement relationship establishes a verti-
cal link between requirement chunks whereas the AND/OR
relationship establishes a horizontal link between them.

To conclude, requirements engineering involves the
creation and criticism of many descriptions of hypothetical
system properties or environmental possibilities. These de-
scriptions are captured in requirement chunks.

1. Manner is a subtype of way (see Fig. 3).
2. The notation of RC indices is the following: given a requirement chunk

RCi, the indice i is incremented for ANDed RCs, an exponent is incre-
mented for ORed RCs (e.g., RCi1, RCi2, RCi3, etc.), and the dotted notation
RCi.1 is used to refine RCs. Thus, the requirement chunks ANDed to RCi.1
are RCi.2, RCi.3, etc. However adequate for top down approaches of goal
discovery, this numbering scheme is not adapted for supergoal discovery
which is not addressed in this paper.

Fig. 4. The scenario structure.

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1059

The alternative and composition relationships help in
structuring these descriptions by separating chunks which
represent alternatives of one another and chunks which are
complementary to one another. The refinement relationship
helps in moving from business goals through different levels
of abstraction at the discretion of the requirement chunk
author. In Section 4, we shall show the manner in which the
different levels defined in the CREWS project [29], namely
the contextual, system interaction, and system internal levels, are
realized by the abstraction relationship. Distinguishing be-
tween the three kinds of relationships does not represent an
attempt at modifying the traditional AND/OR structure of
goal hierarchies. However, it does introduce goals at different
abstraction levels as an additional feature in such a hierarchy.

The discovery of RCs’ and relationships between them
are both supported in our approach by guiding rules thus
leading to a more systematic exploration of choices and a
better support for requirements completeness and refine-
ment. These rules are presented in the next section.

3 DISCOVERING GOALS

3.1 Overview of the Goal Discovery Process
In the requirements elicitation process, goal discovery and
scenario authoring are complementary activities. Once a
goal is discovered, scenario authoring can be done, fol-
lowed by goal discovery. These goal-discovery/scenario-
authoring sequence is repeated to incrementally populate
the requirement chunks hierarchy (Fig. 6).

The requirements elicitation process can be viewed as a
flow of steps: each step starts with a given goal and describes
a scenario as a possible concretization of the goal. Clearly, a
step results in a complete requirement chunk. In order to
progress, a new goal has to be determined. This is done in
the goal discovery activity through an analysis of the sce-

nario. Thus, it can be said that the discovery activities
regulate the flow of authoring activities.

Fig. 6. Overview of the discovery process.

It has been shown that flow control is based on strategies
[7], [24], [32]. We identify three strategies, namely refine-
ment, composition, and alternative strategies. Upon the com-
pletion of a step, any strategy can be dynamically chosen.
Thus, there is no statically imposed linear order of the flow
of steps. This flexibility in strategy selection is the main
advantage of the step-flow process. However, it shall be
noticed that goal discovery in this approach is about sub-
goal discovery, not supergoal discovery.

The three discovery strategies exploit the three types of
relationships identified among requirement chunks in the
previous section. Therefore, given a pair <G, Sc>:

•� the composition strategy looks for goals Gi which are
ANDed to G,

•� the alternative strategy searches for goals Gj which
are ORed to G,

Fig. 5. An example of RCs hierarchy.

1060 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

•� the refinement strategy aims to discover goals Gk at a
lower level of abstraction than G.

Thus, when a step is completed and the requirement chunk
is expressed, the Requirement Chunk Author (RCA) has
three options to proceed in the process.

We associate guiding rules (Fig. 7) with each of the
strategies to discover new goals. Therefore, composition (al-
ternative) rules help in discovering goals ANDed (ORed) to
G. All these goals are at the same level of abstraction. The
<G, Sc> chunk is processed by the refinement rules to pro-
vide goals at a lower level of abstraction than G. This is
done by considering each interaction in Sc as a goal. Thus
as many goals are produced as there are interactions in Sc.

Fig. 7. Overview of L’Ecritoire software environment.

We have replaced the AND/OR decomposition used in
goal modeling by refinement, composition and alternative
strategies. The major contribution of our approach is that
whereas decomposition is an ad hoc process, refinement can
be systematically applied. This systematic application is pos-
sible, thanks to the scenario part of the requirement chunk.
The advantages flowing from the refinement strategy and
subsequent rules will be further elaborated in Section 5.

As shown in Fig. 7, the rules are implemented in the
L’Ecritoire software environment and automatically enacted
on request. This facilitates the use of the approach and lim-
its the effort required to apply it. Using L’Ecritoire, the RCA
is automatically guided in a flexible manner to elicit re-
quirements systematically.

3.2 The Discovery Guiding Rules
The current corpus of rules comprises six guiding rules,
two for each strategy. We developed a domain analysis ap-
proach to identify common structuring patterns and their
underlying discriminent criteria in existing collections of
scenarios. The formalization of these patterns results in the
current set of guiding rules. The rules capture generic laws
governing the construction of large collections of goals and
scenarios. These laws are generic in the sense that they can
be applied to the construction of many <Goal, Scenario>
structures. Furthermore, the same rule can be applied at
different levels of abstraction. The current corpus shall be
extended as the domain analysis proceeds.

In this section, each rule is introduced using the follow-
ing template <Goal, Body, Comment>. The goal is expressed
in the notation given in Section 2. The body is expressed as a

sequence of steps to be followed when applying the rule.
The comment explains the rule. A formal description of the
algorithmic parts of rules is presented in Appendix A.

Alternative guiding rule (A1)

Goal:

Discover (from goal G)So (goals ORed to G)Res
(in a goal structure driven manner)Man

Body:

Step1: Requirement Chunk Author (RCA) rephrases goal
 G according to the goal template,
Step2: RCA provides alternative parameters of goal G,
Step3: Compute all possible combinations of parameters,
Step4: Present the possible combinations to the RCA,
Step5: RCA evaluates and selects the goals of interest,
Step6: Requirement chunks corresponding to the
 selected goals are ORed with each other.

Comment:

The guiding rule A1 uses the goal G of a requirement chunk
(from goal G)So, to discover ORed goals to G (goals ORed to
G)Res. The discovery strategy (in a goal structure driven man-
ner)Man exploits the goal structure defined in Section 2. First,
the RCA is asked to identify the parameters of the goal. For
example, the goal ‘Provide cash to our bank customers from
ATM’ will be restructured as follows:

‘Provide (cash)Res (to our bank customers)Dest (from account)So
(with a card based ATM)Mea’

This leads in the above example, to introduce the source
(from account)So and to specialize the means (with a card based
ATM)Mea. Then, the RCA identifies relevant alternative val-
ues to consider for each parameter (step 2). All possible
combinations (step 3) of parameters with respect to the al-
ternative values provided by the RCA are presented to
him/her (step 4) as a list of possible ORed goals to the ini-
tial goal G. The RCA evaluates the proposals and selects the
goals of interest (step 5).

Alternative guiding rule (A2)

Goal:
Discover (from requirement chunk <G, Sc>)So
(goals ORed to G)Res

(reasoning on flow conditions of Sc)Man

Body:

Step1: Scan scenario description to construct the graph
 of paths of actions,
Step2: Complete the graph using information from
 scenario descriptions associated to goals having
 the same parameters as G except the manner,
Step3: Compute all possible missing paths,
Step4: Submit missing paths to RCA. RCA selects the
 ones of interest and associates each of them with a
 specific manner to fulfill G,

Comment:

The guiding rule A2 aims to discover alternative goals of a
goal G. These discovered goals have the same verb, the
same parameters (i.e. source, target, beneficiary, and means)
but different manners. ‘Withdraw cash from ATM in a normal

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1061

way,’ ‘Withdraw cash from ATM in a normal way with code error
correction’ are examples of goals that rule A2 aims at dis-
covering. This rule allows a graph to be constructed such
that it represents all possible paths of actions already identi-
fied in the scenario of the initial requirement chunk (step 1)
and completed by scenarios of its ORed requirement
chunks (step 2) having the same purpose (the verb and pa-
rameters are the same except the manner parameter). A
path is characterised by zero to n nested flow conditions and
a graph of paths is considered incomplete when there exists
a flow condition without a path to look after its negation.
For example, in the scenario associated to the goal ‘With-
draw cash from the ATM in a normal way’ (see Fig. 5) the path
is composed of the four nested following conditions:

1 If the card is valid
 2 If the code is valid
 3 If the amount is valid
 4. If the user asked the ATM to supply a receipt

Therefore, four missing paths are identified one for each
condition. Each of them leads to a case where the condition
can be false. A formalization of this algorithm is given in
Appendix A. The rule computes all the combinations of
negated conditions that should be investigated as possible
missing paths (step 3). Each path identifies an alternative
manner to deal with the initial goal G. There are two types
of scenarios: the normal one and the exceptional one. For
each case the RCA is asked to determine whether it is a
normal or exceptional one and to propose the manner (step
4). Each discovered goal shall be further concretized by a
scenario to complete the requirement chunks. This will be
done in the authoring activity.

Composition guiding rule (C1)
Goal:

Discover (from requirement chunk <G, Sc>)So
(goals ANDed to G)Res
(reasoning on final and initial states of Sc)Ma

Body:

Step1: Check inclusion/exclusion of initial states in final
 states of Sc,
Step2: For every initial state Is that is not included in the
 final states, RCA is asked to point out the final
 state Fs hindering the reaching of the initial state,
Step3: Suggest to the RCA a recovery scenario having Fs
 as part of its initial states and Is as part of its final
 states. RCA is requested to name the associated
 recovery goal.

Comment:

The guiding rule C1 uses the requirement chunk as a source
for reasoning (from requirement chunk <G, Sc>)So and discov-
ers complementary goals of G (goals ANDed to G)Res based
on the inclusion of final and initial states of the initial sce-
nario (reasoning on final and initial states of Sc)Man. The body
of the rule uses the inclusion property according to which
the initial states of a scenario must in its final states for en-
suring a self-contained functioning i.e every scenario exe-
cution leaves the involved agents in a state which permits
the repeated execution of the same scenario. The rule
checks if the inclusion property holds (step 1). If this is not

the case, then this means that an exceptional state has been
reached (step 2). Once the rule has detected the needed re-
covery scenarios (step 3), it asks the RCA to qualify them by
goals to be ANDed to goal G.

Composition guiding rule (C2)

Goal:
Discover (from requirement chunk <G, Sc>)So

(goals ANDed to G)Res
(reasoning on Sc interactions)Man

Body:

Step1: RCA identifies the interaction objects in Sc that
 correspond to resources,
Step2: Construct interaction pairs (Consume, Produce) for
 each identified resource.
Step3: Suggest a new goal ANDed to G for every
 incomplete pair (i.e. in which either the Consume
 interaction or the Produce interaction is missing).
Step4: RCA selects the relevant goals and names them.

Comment:

The guiding rule C2 uses a classification of scenario inter-
actions to support the discovery of (goals ANDed to G)Res,
which are complementary to the initial goal G. It identifies
interactions which objects are resources (step 1), for exam-
ple, the ‘card’ and the ‘cash’. Applying the produc-
ing/consuming principle, for each resource, the rule
searches for pairs of interactions in which the one consumes
the resource that the other produces (step 2). Every incom-
plete pair originates a new goal (step 3) being accepted or
not by the RCA (step 4).

Refinement guiding rule (R1)

Goal:

Discover (from requirement chunk <G, Sc>)So
(goals refined from G)Res
(using every interaction of Sc as a goal)Man

Body:

Step1: Associate a goal Gi with every atomic action Ai in
 Sc. Gi refines G.
Step2: Complement Gi by the manner ‘in a normal way’.
Step3: RCA evaluates the proposed menu of goals Gi and
 selects the goals of interest.
Step4: Requirement chunks corresponding to these
 selected goals are ANDed one another.

Comment:
The guiding rule R1 aims at refining a given requirement
chunk (from requirement chunk <G, Sc>)So by suggesting new
goals at a lower level of abstraction than G (goals refined from
G)Res. The refinement mechanism underlying the rule treats
every interaction between two agents in the scenario Sc as a
goal for the next lower level of abstraction (step 1). For the
goals accepted by the RCA (step 3), the corresponding re-
quirement chunks are ANDed to one another (step 4).

Refinement guiding rule (R2)

Goal:
Discover (from requirement chunk <G, Sc>)So
(goals refined from G)Res
(by completing with actions)Man

1062 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

Body:

Step1: RCA types actions according to classification
 information provision/request, service
 provision/request, condition evaluation
 action/constrained flow of actions).
Step2: Construct action pairs for each of the three types.
Step3: Detect missing actions and update Sc accordingly.
Step4: Suggest Refined goals to G for every added
 action.
Step5: RCA evaluates and names the selected goals.

Comment:

The guiding rule R2 aims at refining a given requirement
chunk <G, Sc> by suggesting new actions (by completing with
actions)Man, that could be looked upon as goals refining G:
(goals refined from G)res. The rule uses three classes of de-
pendent action pairs: (service request, service provision),
(information request, information provision) and (condition
evaluation action, constrained flow of actions). The RCA
uses these classes to type the actions of the scenario. There
exists a dependency among the two actions of a pair: any
service request implies at least one service provision, an
information request implies at least one information provi-
sion and a constrained flow of actions implies an action
which evaluates the condition. Using these dependencies,
pairs of actions are constructed (step 2).Every incomplete
pair suggests a missing action (step 3) which is inserted in
the scenario. Every new action is suggested as a goal for the
next step of refinement (step 4). The RCA evaluates and
names the selected goals.

4 APPLYING RULES TO THE Crews-L’Ecritoire
GOAL ORIENTED APPROACH

This section illustrates the use of the generic rules within the
Crews-L’Ecritoire goal oriented approach. In [29], we have
classified scenarios into contextual, system interaction and sys-
tem internal scenarios. Here, we extend this classification to
requirement chunks. The three types of RCs, namely contex-
tual, system interaction and system internal requirement chunks
inherit their types from the scenario types and identify three
types of associated goals. As a result we organize the re-
quirements collection in a three levels abstraction hierarchy.
We believe that this helps separating concerns in require-
ments elicitation. This was proved useful when applying the
approach to the ELEKTRA real case [21]. The following is a
walk through these three levels to illustrate the discovery
process and the use of the discovery rules with the ATM ex-
ample. The walkthrough is presented as a use session of
L’Ecritoire and illustrated with screen dumps.

4.1 Illustrating Goal Discovery at the Contextual Level
The aim of the contextual level is to identify the services that
a system should provide to an organisation and their ra-
tionale. At this level, several alternative architectures of
services are postulated and evaluated. All of them corre-
spond to a given business goal. Let ‘Improve services to our
bank customers’ be such a business goal.

A contextual chunk captures a design alternative defined by a
design goal and a service scenario. A design goal expresses one
possible manner of fulfilling the business goal. For example,

the design goal ‘Provide cash to our bank customers from ATM’
is one possible way of satisfying the business goal. A service
scenario describes the flow of services among agents (one
being the system itself) which are felt necessary to fulfill the
design goal. An atomic action of a service scenario is a serv-
ice such as ‘the bank customer withdraws cash from the
ATM’ whereas the entire scenario describes the services ar-
chitecture associated with the design goal. The requirement
chunk RC1 in Fig. 5 is an example of contextual chunk.

At the contextual level, it is of major importance to ex-
plore as many design alternatives as possible i.e., to visual-
ize the various alternative ways by which a system can help
an organization to achieve one of its objectives. The guiding
rule A1 is useful for this purpose. The screen dump in Fig. 8
presents the window provided by L’Ecritoire to support the
application of this rule to RC1.

First, the rule helps the RCA to identify the design goal
parameters (see ‘Goal Structure’ frame). Secondly, the RCA
is asked to provide alternative values for each parameter.
As shown in the right top part of the window, the RCA has
identified ‘account balance information’ and ‘money trans-
fer facilities’ as two possible alternative target values.

When the ‘Generate Goals’ button is used, all possible
combinations of values of parameters are computed, com-
bined with the verb ‘Provide’ and presented to the RCA pa-
rameter value wise (see the frame ‘Possible Goals’ in Fig. 8).
There exists a predefined order of parameter types that can
be customized in every instantiation of the rule. Assuming
the following order for the current example: <target, benefi-
ciary, source, means>, the possible combinations will be pre-
sented in this order; i.e., for a given target, all possible benefi-
ciaries, for a given 2-tuple <target, beneficiary> all possible
sources and for a given 3-tuple <target, beneficiary,
source>, all possible means.

This leads to 27 alternative manners to fulfill the busi-
ness goal ‘Improve services to our bank customers’. These
manners are themselves3 ORed to the RC1’s goal and stored
in the RCs hierarchy (Fig. 9). The goal selected by the RCA
are displayed in the bottom frame of the window. The pay-
off of applying rule A1 is a semiautomated generation of
alternative design options. The rule is an incentive to envi-
sion various design solutions and explicitly choose one,
then avoiding implicit choices which can demonstrate to be
wrong later on. The parameter value wise strategy to gen-
erate goals was found useful by practitioners as it limits the
combinatorial space of solutions.

Following the suggestion of L’Ecritoire, the RCA writes the
service scenario Sc1 as shown in Fig. 5 and decides to explore
in more detail the requirements of the system characterized
by RC1. This is achieved by moving to the interaction level.

3. For sake of readability we reduce the RCki goal statements to the ex-
pression of manners. The complete expression, for example for RC1, is
‘Improve (services)Obj (to our bank customers)Ben (by providing (cash)Obj (to our bank
customers)Dest (from ATM)Mea)Man’. It uses a recursive definition of the goal
manner. The manner ‘by providing cash to our bank customers from ATM’
associated to ‘Improve’ is itself a goal expression with an object, the ‘cash’,
a destination ‘our bank customer’ and a means, the ‘ATM’.

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1063

4.2 Illustrating Goal Discovery at the System
Interaction Level

At the system interaction level the focus is on the interactions
between the system and its users. These interactions are
required to achieve the services assigned to the system at
the contextual level. Each of these services are refined in
system interaction chunks and new ones are added.

A system interaction chunk, captures one way of providing
a service as expressed at the previous level. It couples a serv-
ice goal and a system interaction scenario. A service goal ex-
presses a manner of providing a service, for example ‘With-

draw cash from ATM in a normal way’ and therefore, estab-
lishes a refinement link with a contextual chunk. The associ-
ated system interaction scenario describes a flow of interactions
between the system and its users to fulfill the service goal.
Sc1.1 in Fig. 5 is an interaction scenario which, coupled to the
service goal G1.1, constitutes the requirement chunk RC1.1.

The guiding rule R1 helps the RCA in the discovery of
service goals by analyzing the service scenario Sc1. First,
every Sc1 action is proposed as a candidate service goal.
Second, those which are selected by the RCA are rephrased
as goals. For example, action number 2 in Sc1 (see Fig. 9) is

Fig. 8. Example of application of rule A1 using L’Ecritoire.

Fig. 9. Contextual chunks discovered from the contextual chunk RC1.

1064 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

rephrased as ‘Withdraw cash from ATM’. Third, the rule sug-
gests that the scenarios authored for these goals describe
the normal courses of actions. Thus, the manner of every
generated goal is fixed to ‘in a normal way’. This leads in our
example to the three refined goals: G1.1, G1.2, and G1.3.
The corresponding RCs (called RC1.1, RC1.2, and RC1.3 in
Fig. 12) are ANDed to one another and related to RC1
through a refinement link.

For each of the three service goals, scenarios are
authored and their contents help discovering new goals
which, when associated with scenarios, support the discov-
ery of new goals etc. This is made possible by the rules C1,
C2, and A2. The first two of these guide the RCA in the dis-
covery of goals ANDed to the three RCs whereas A2 guides
the discovery of ORed RCs. Referring to the use case termi-
nology, one can say that the rule A2 helps identifying the
variations of a normal course of actions in a use case
whereas rules C1 and C2 help discovering the use cases
complementary to the one under description. These use
cases are necessary to obtain a complete description of the
system functionalities.

As illustrated in Fig. 10, the rule A2 computes and dis-
plays all possible missing paths of actions in the scenario of
RC1.1. The assumption is that each of these paths can be
regarded as a different way of fulfilling the goal G1.1. For
example, the path ‘C1 and not C2’ in Fig. 10 is associated to
the manner ‘in a normal way with code error correction’ at-
tached to the goal ‘Withdraw cash from ATM’.

The application of A2 in our example leads to the intro-
duction of RC1.11, RC1.12, RC1.13, and RC1.14 which are
ORed to RC1.1 as shown in Fig. 12.

Once the scenarios corresponding to these new goals
have been authored, the rule A2 can be applied again to
discover new manners of withdrawing cash. For example,
the goal G1.18, ’Withdraw cash from ATM by treating the excep-
tion of three invalid code attempts’ is discovered (Fig. 10).

The rule C1 is then applicable to the scenario associated
with this last goal. The initial and final states in Sc1.18 are
the following:

•� Initial State: The ATM is ready. The user has a card.
•� Final State: The ATM is ready. The ATM has the user’s

card.

The inclusion property does not hold. Indeed an excep-
tional state has been reached (the ATM has the user’s card).
Thus, a recovery scenario is needed. In our example the
rule suggests a goal for the restoration of the card to the
user. The RCA names the goal ‘Restore card to user’. The goal
is associated within RC1.6 (Fig. 12) to a scenario sketching
the way the card can be restored. This scenario has ‘The
ATM has the user’s card’ in its initial states and ‘The user
has a card’ in its final states.

Finally, let us apply the rule C2 to RC1.1. The rule uses
the resource consumer/producer principle in order to de-
tect two ANDed goals to G1.1.

As illustrated in Fig. 11, the rule displays the actions of
the scenario in the ‘Actions List’ and asks the RCA to sepa-
rate those which consume resources (‘Consuming’ frame)
from those which produce resources (‘Producing’ frame).
For example, actions 8 and 9 are productions because the
ATM produces a resource when it ‘delivers the cash to the

user’ or when ‘a receipt is printed’. Then, the rule asks the
RCA to identify producing/consuming pairs (displayed in
the ‘Producing/Consuming Completed Pairs’ frame). Ac-
tions that cannot participate in complete pairs remain in the
‘Producing’ and ‘Consuming’ frames.

In Fig. 11 there are two remaining actions in the ‘Pro-
ducing’ frame. Therefore, two new goals are suggested,
namely:

•� ‘Fill in the ATM with receipt paper’ (G1.4), and
•� ‘Fill in the ATM with cash’ (G1.5).

The corresponding requirement chunks RC1.4 and RC1.5
are created and ANDed to RC1.1 (Fig. 12).

The set of requirement chunks resulting of the application
of rules C1, C2, and A2 at the system interaction level, is
summed up in Fig. 12. Clearly, the refinement process at this
level was initiated from the scenario Sc1, by the application
of rule R1. However, it shall be noticed that composition and
alternative rules were useful to reach a more complete col-
lection of system requirements. Still, more detailed require-
ments have to be found and this is supported by the applica-
tion of the generic rules at the system internal level.

4.3 Illustrating Goal Discovery at the System Internal
Level

The system internal level focuses on what the system needs, to
perform the interactions selected at the system interaction
level. The ‘what’ is expressed in terms of internal system ac-
tions that involve system objects but may require external
objects such as other systems. System interactions are refined
in internal system chunks and new ones are added.

An system internal chunk combines a system goal and a
system internal scenario. A system goal expresses a possible
manner to perform an action identified in a system interac-
tion scenario. For example, ‘Verify the card validity in a nor-
mal way’ is a system goal. The associated system internal sce-
nario describes the flow of interactions among the system
objects to fulfill the system goal (see Fig. 13). The couple
constitutes the requirement chunk RC1.1.1.

Applying the rule R1 to the requirement chunk RC1.1 re-
sults in chunks RC1.1.1 to RC1.1.4. Fig. 13 shows the result
of the discovery activity: alternative and complementary
system internal RCs are discovered by applying the rules
R2 (to discover RC1.1.5 and RC1.1.6), A2 (to discover
RC1.1.11 to RC1.1.13), C2 (to discover RC1.1.7) and C1 (to
discover RC1.1.8). For the sake of space we do not describe
this process in detail. However, the result can be retrieved
by applying the mentioned rules to the scenario Sc1.1.1.

5 THe POTENTIAL OF THE APPROACH

This section evaluates the potential practical benefits that
one can expect from the use of the Crews-L’Ecritoire ap-
proach. In order to relate these benefits to industrial prac-
tice, three workshops were conducted with participation
from system development experts drawn from French in-
dustry. These experts where asked to evaluate the ap-
proach. Thus, the potential of the approach as presented
here has been done by uninvolved parties.

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1065

Fig. 10. Example of application of rule A2 using L’Ecritoire.

Fig. 11. Example of application of rule C2 using L’Ecritoire.

1066 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

Fig.12. System interaction chunks discovered from the contextual chunk RC1.

Fig. 13. System internal chunks discovered from the system interaction chunk RC1.1.

Before conducting these workshops, an exploratory sur-
vey of practice was conducted by the CREWS consortium
through site visits. This survey looked at 15 projects in four
European countries. The results of the survey have been
reported in [33]. This survey highlighted three major prob-
lems and the purpose of the one day workshops was to
evaluate whether or not the Crews-L’Ecritoire approach alle-
viates any of these problems. This section is organized in
two parts, the first of which deals with the three major
problems and how the Crews-L’Ecritoire approach tries to
solve these. The second part presents the feedback received
in the one-day workshops.

5.1 Meeting Industrial Requirements
The three major problems identified were as follows:

1)�methodological support. As reported in [33], practitio-
ners feel a very high need for methodological guid-
ance. In the Crews-L’Ecritoire approach, guidance is
provided by using the relationship (G, Sc) in the for-
ward direction to operationalize goals and in the re-
verse direction, to discover goals. Guidance to dis-
cover goals is flexible as it provides three comple-
mentary and independent strategies:

•� using the refinement strategy, goals lower than G
in the goal hierarchy are discovered. This is par-
ticularly useful in those situations in which the
scenario associated with a goal contains actions
that cannot be directly operationalized. In such a
case, a statement needs to be made about how
these high level actions can themselves be made
operational. The approach proposes to treat all

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1067

such actions as goals. As a consequence, scenarios
can be associated with these goals and the associ-
ated scenarios can be further analysed to deter-
mine if their actions can be directly made opera-
tional or not. This goal discovery—scenario forma-
tion—goal discovery cycle continues till all actions
of scenarios can be made directly operational.

•� using the AND/OR strategies, goals which are al-
ternative of or complementary to G are discovered.
This is useful in achieving completeness, i.e., in
determining the complete set of scenarios in a use
case and the set of use cases necessary to cover all
the features of the system under investigation. The
guidance provided to discover goals is flexible in
the sense that there is no predefined, imposed or-
der in which the process has to be performed but
instead a dynamic selection of one among the three
strategies can be done by the RCA at each step.

•� the automation of the guiding rules overcomes the
heavy investment that their manual application
would require.

2)� It addresses [33] top-down decomposition of scenarios,
‘from informal to formal scenario’ definitions, and ‘from
black-box to white-box scenario’ development.

Observation of current practice shows that the
majority of requirements stakeholders prefer to de-
velop scenarios in a top down manner. This is also true
in goals modeling [7], [13]. The difficulty is in the
control of the top down decomposition. The Crews-
L’Ecritoire approach is about the discovery of sub-
goals from actions of the scenario attached to the goal.
The process is therefore top-down but controlled by
the refinement guiding rules. We have seen in Section
4 of the paper how the refinement relationship helps
in moving from contextual RCs dealing with contex-
tual issues such as alternative design goals and re-
lated services to more detailed issues like service
goals and system interactions descriptions.

Again, in practice, stakeholders like to apply the
black box/white box principle. However, when put in
practice, the difficulty with this principle is to ensure
that the level of abstraction of the black box is pre-
served when its insides are being described. For ex-
ample, it was reported that in many projects [33],
authors mix up different levels of detail and different
concerns in the same scenario description. This risk is
removed in our approach since the abstraction level of
a scenario is determined by its goal and is made ex-
plicit by goal discovery, prior to scenario authoring.
Besides, the latter is guided by content rules which
help in understanding the nature of the information
required in the scenario.

Clearly, the approach contributes to the mapping
from informal to formal scenario descriptions. Indeed we
assume scenarios to be textual and use authoring
rules [3], [28] to provide style and contents guidelines
as well as devices for analysis, disambiguation, and
completion. The linguistic devices are based on a case
grammar and linguistic patterns. Thus, they support
the transformation of an informal scenario description
written in full prose into an unambiguous, complete,
and well structured text.

3)� The Crews-L’Ecritoire approach addresses all the
three problems found by Cockburn [5] in trying to
structure use cases with goals in relatively large proj-
ects. These are as follows:

•� difficulty with levels and the complications encoun-
tered in using a goal refinement approach. The
Crews-L’Ecritoire approach formally tracks goals at
different granularity levels in the RCs hierarchy.
This is achieved by the Refinement relationship.
The value addition done by our approach lies in
goal discovery rules which exploit the reverse re-
lationship between G and Sc, i.e., from scenario to
goals, in order to discover goals lower in the RCs
hierarchy. Rules of the refinement strategy help in
systematising the operationalization of goals as an
independent activity, separate from that of relating
goals through AND/OR relationships.

•� the unsatisfactory and ‘ad hoc’ process of identi-
fying variations of a use case. Cockburn notices
that “each subordinate goal case carries forward
the list of variations, until it is time to break them
out into their own use cases,” In the Crews-
L’Ecritoire approach variations of the same goal are
structured through OR relationships and rules
systematize the breaking out of a goal into its
variations. Thus, each of these can be concretised
by its own scenario.

•� the tedious problem of tracking system features
across use cases. In practice ‘a goal or use case is
delivered for a given set of features’ and ‘the fea-
tures cross multiple use cases’. Therefore, tracking
that all system features are captured in use cases is
complicated and the risk of incompleteness of the
requirements specification is very high. Our ap-
proach solves the problem by attaching features to
goals, systematizing the discovery of features and
related goals, and by defining guiding rules lead-
ing to an AND goal structure. The simplest feature
is developed first and others are discovered using
the AND goal discovery strategy.

5.2 Industrial Evaluation of the Approach
The workshops held to evaluate the Crews-L’Ecritoire ap-
proach include a presentation of the approach, a demon-
stration of the tool, a session of tool manipulation by the
participants and close with a panel discussion. At the end
of the workshops, participants were asked to fill-in a ques-
tionnaire. The results extracted from these questionnaires
are summed up in Tables 1 and 2.

Participants were asked to grade the usefulness of the
Crews-L’Ecritoire approach on a scale of 1 to 7. The overall
grading is presented in Table 1. It shows a quite high level
of satisfaction, which is encouraging.

Table 2 shows the four more frequently mentioned contri-
butions of the approach to the improvement of the current
practice. There is clearly convergence with the industrial
problems reported in 5.1, especially for points (A) and (D).

The methodological support was most frequently men-
tioned benefit expected from the use of the approach. More
precisely:

1068 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

•� the AND/OR strategies were found useful in achiev-
ing completeness of system functional requirements
and system physical requirements,

•� the OR strategy helped in the identification of varia-
tions of normal system behaviors,

•� rule A1 was found useful in cases where alternative
designs have to be envisioned,

•� over all, the top-down approach of the RE process
was appreciated as fitting the natural practice. The
difficulty in controlling the top down decomposition
process in practice was found mitigated by the guid-
ing rules.

Participants noticed that the methods they know about
such as OOSE [16] and SOMATiK [12] are lacking a tight
coupling between requirements and scenarios which is provided
in the Crews-L’Ecritoire.

Positive statements were made regarding the contribu-
tion of the approach to the mapping from informal to formal
scenario descriptions. The linguistic devices for an analysis,
disambiguation and completion were found applicable to
most of real situations where it is necessary to support the
transformation of an informal scenario description written
in full prose into an unambiguous, complete, and well
structured text.

Finally, the predefinition of the three levels contextual,
system interaction, system internal was found useful in
clarifying the concerns of system requirements. The princi-
ple of tracking system requirements from business goals,
and alternative designs to system functional and physical
requirements was appreciated, but the technical support for
this was found limited.

Extensions and improvements such as supporting sev-
eral natural languages, connection with industrial tools (i.e.
RequisitePro, Doors), providing cooperative negotiation
and evaluation of requirements were suggested by work-
shop participants.

6 CONCLUSIONS

The basis of our approach is the exploitation of the goal-
scenario relationship but in the reverse direction. One can
now talk of a tight coupling between goals and scenarios; in
the forward direction this coupling promotes goal operation-
alization whereas in the reverse direction it promotes goal
discovery. Since, in the forward direction, scenarios represent
a concrete, useful way of realizing a goal, any technique
which uses scenarios to discover goals shall produce only
useful goals. This contributes to removing the fitness of use
problem identified by Potts [25] which leads to the genera-
tion of spurious, uninteresting, or noncritical goals.

Since interactions expressed in scenarios are concrete
and recognizable, the use of goal-scenario coupling for
goal discovery helps in removing the ‘fuzziness’ that do-
main experts find in the notion of a goal. Instead, each
interaction corresponds to goals. Again, goal discovery
now becomes a natural process through interactions of
scenarios and the goal-scenario coupling removes some of
the mystery and ad hocism associated with it. In this sense
it helps in goal discovery.

Finally, the combination of composition, alternative and
refinement rules alleviates the problem of goal reduction.
By generating AND, OR relationships and goals at different
abstraction levels, the approach automates and supports a
major part of the requirements engineer’s work.

APPENDIX A
We present here: 1) formal definitions of elements of the
requirement chunk model, and 2) formal definitions of
some steps of the guiding rules.

DEFINITION 1 (Requirement Chunk). A requirement chunk
RC is a couple <G, Sc> where G and Sc are, respectively, a
goal and a scenario4 as defined in Definitions 2 and 3. We
use in the following, the functions goal and scenario: goal:

RC � *,
scenario: RC � Sc,

such that RC is the set of requirement chunks, * the set of
goals, Sc the set of scenarios, and goal(RCi) (respectively
scenario(RCi)) gives the goal Gi (the scenario Sci) associ-
ated to RCi.

Moreover, the functions AND, OR, and RefinedBy:

AND: RC � RC
OR: RC � RC
RefinedBy: RC � RC,

give the RCs associated to a given RC, respectively, through
AND, OR and RefinedBy relationships. The AND, OR, and
RefinedBy functions are bijective.

4. 5&, *� and 6F are, respectively, the sets of the requirement chunks,
goals, and scenarios.

TABLE 1
AVERAGE GRADING OF USEFULNESS

TABLE 2
FREQUENCY OF IDENTIFIED POTENTIAL BENEFITS

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1069

In the following, we make use of ANDtrans and ORtrans

which, given a requirement chunk RCi, give all the re-
quirement chunks that are complementary (respectively
alternative) to RCi by transitive application of the AND
function (respectively of the OR function), and all the re-
quirement chunks to which RCi is ANDed (respectively
ORed) by transitive application of AND–1 (of OR–1).

DEFINITION 2 (Goal). A goal g is an element of the set */($ RCi
¶ 5&/goal(RCi) = g) Â ($ g’ ¶ */manner(g’) = g).

Indeed, a goal is either coming from a requirement
chunk, or it is embedded in the manner parameter of a goal.

Moreover, g is such that there exists a verb v ¶�VE and a
target t ¶ 7$/(verb (g) = v) Á (target (g) = t); verb and target
are thus the functions returning the verb and target ex-
pressed in the goal g. Indeed, g has, at least, a verb and a
target, as informally illustrated in Section 2.1.1.

Additionally, optional parameters can be expressed in
goals. These parameters are obtained by the following par-
tial functions:

direction: RC � Dir,
way: RC � Wa,
beneficiary: RC � Ben,
object: RC � Obj,
result: RC � Res,
source: RC � So,
destination: RC � Dest,
means: RC � Mea, and
manner: RC � Man.

DEFINITION 3 (Scenario). A scenario is a graph G(;, 8, /x, /u)
where:

•� X = {x1, ..., xn} is a finite set of nodes.
•� U = {u1, ..., un} is a finite set of edges where ui ¶(; � ;).
•� L

x
 is the node label function X � Condition where

Condition is the set of conditions of a scenario: Condi-
tion ¶ {ci/i ¶ N} ° {true}. Lx is a total function, and
true is used to express unconditioned flows of actions.

•� L
u
 is the edge label function 8 � Action, where Action

is the set of actions of the scenario: Action ¶ {ai/i ¶ N}
° {Nac}. Lu is a total function, and the null action is
used for flow of actions combinations.

In addition, we define the scenarios initial and final
nodes.

•� The set ;i of initial nodes of a scenario is defined as {xi
¶ ; such that: À$ xj ¶ X, xj = f(xi)}, where f: X � ; is
the function following. Indeed there is no node in the
scenario graph that precedes any of the initial nodes.

•� The set X f of final nodes of a scenario is defined as {xi
¶ X such that: À$ xj ¶ X, xj = p(xi)}, where p: X � ; is
the function preceding. Indeed, there is no node in the
scenario graph that follows any of the final nodes.

Within the set of final nodes of a scenario, we distin-
guish Xfn from Xfe, where Xfn is the set of normal final
nodes (which mark a normal end for a scenario, that is
to say a scenario end in which the goal associated to the
scenario is fulfilled, see Section 2.1.2), and Xfe is the set
of exception final nodes (which mark an exceptional
end for a scenario, that is to say a use case end in which

the goal associated to the scenario is not fulfilled, see
Section 2.1.2).
The graph G which describes a scenario respects the fol-

lowing constraints:

•� G has one and only one initial node: Card(Xi) = 1.
•� G has one and only one end node: Card(Xf) = 1. Thus,

the end node of a scenario is either normal or excep-
tional: Xfn ° Xfe = Xf.

•� There is at least one path from the initial node ;i to
the end node Xf.

•� G has no loop.

In the remaining, we describe formally some automated
steps of the guiding rules presented in Section 3.3.

Guiding rule A1

For the steps 3 and 4, the following formula are applied:
Given an initial goal g, the RCA has provided for each

parameter a set of alternative values A1 to A 7, where A1 =
alternativeObject(g), A2 = alternativeResult(g), etc. The set
of possible combinations is G1 = A 1 � A 2 � ... � A 7.

Once the RCA has applied the selection s1 to the set of
goals (step 5), the hierarchy of requirement chunks is up-
dated such that:

" g’ ¶ G 2, G2 = s1(G 1), $ RC,’ RC” ¶�5&/
(g’ = goal(RC’)) Á (g = goal(RC”)) Á (RC’ ¶ ORtrans(RC”)).

Guiding rule R1

Steps 1 and 2 are formally described as follows:
Given an initial requirement chunk RC <G, Sc>, the set

of generated goals G 1 is such that:

" ui ¶ 8(sc), " ai ¶ Lu(ui), $ g’ ¶ G 1/
(verb(g’) = actionName(ai)) Á (target(g’) = parameter(ai))

 Á (source(g’) = fromAgent(ai))
 Á ((destination(g’) = toAgent(ai))
 Â (beneficiary(g’) = toAgent(ai))
 Á (manner(g’) = ‘in a normal way’).

Once the RCA has applied the selection s2 to the set of
goals (step 4), the hierarchy of RCs is updated such that:

" g” ¶ *2, *2 = s2(*1), $ RC,’ RC” ¶�5&/(g” = goal(RC”))
 Á ((RC” ¶ ANDtrans(RC’)) Á (RC’ = RefinedBy(RC))
 Â (RC” = RefinedBy(RC))).

Guiding rule A2

Steps 1 and 2 are formally described as follows:
Given a requirement chunk RC <G, Sc>, let be RCor the

set of requirement chunks ORed to RC, that is to say such
that:

" RCi ¶ RCor, (RCi ¶ ORtrans(RC))
 Á (manner (goal (RCi)) = manner (g))
 Á (beneficiary(goal (RCi)) = beneficiary(g))
 Á (object(goal (RCi)) = object(g))
 Á (result(goal (RCi)) = result(g))
 Á (source(goal (RCi)) = source(g))
 Á (destination(goal (RCi)) = destination(g))
 Á (means(goal (RCi)) = means(g))

The computation of missing paths is done upon a graph
gr (X,’ U,’ Lx,’ Lu’) where X’, U’, Lx,’ Lu’ are defined like X,, U,
L

x, Lu respectively, where

1070 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 12, DECEMBER 1998

•� X’ = ° Xi, where Xi is the set of nodes associated to
scenario(RCi), " RCi ¶ RCor ° {RC}

•� U’ = (8i, where 8i is the set of edges associated to sce-
nario(RCi) " RCi ¶ Rcor ° {RC}

•� /x’ is the node label function ;’ � &i, where &i is the
set of conditions of a scenario scenario(RCi), " RCi ¶
RCor ° {RC}

•� /
u’ is the node label function U’ � $i, where $i is the

set of actions of a scenario (RCi), " RCi ¶ RCor °
{RC}

This graph does not correspond to the behavior of one
scenario, but of several complementary scenarios. Thus, it
has the following properties:

•� The graph gr has one and only one initial node:
Card(Xi) = 1.

•� The graph gr has one or several end nodes: Card(Xf)
� 1. The end nodes of the graph gr can be normal and
exceptional, but there is at least one normal end node:
Card (Xfn) � 1.

•� There is at least one path from the initial node Xi to
any end node Xf.

•� The graph gr has no loop.

The missing cases sci are identified by all paths from ;i

to all node in negation(ui) " ui ¶ 8’/Card(f(ui)) = 1, where f
is the function following, and negation the function re-
turning all possible ways to express Àui. Then, each missing
case c of sci is presented to the RCA as the conjunction of
the conditions of all nodes of c, together with Àui.

Once the RCA has associated a goal to each sci (this set of
goal is called G��), he/she applies the selection s3 (step 4),
the hierarchy of RCs is updated such that:

" g’ ¶ G2, G 2
�= s3(G 1), $ RC’ ¶�RC/

(g’ = goal(RC’)) Á (RC’ ¶ ORtrans(RC)).

Guiding rules C1, C2, and R2:

As these rules do not need any complex calculation, we do
not provide any formal definition. The inclusion/exclusion
checking in rule C1 relies on the use of the classical mathe-
matical ‘´’ function, by definition of the state as sets com-
posed of elementary state components. The selection inte-
gration steps in rules C1, C2, and R2 are similar to the inte-
gration steps formulated above.

ACKNOWLEDGMENT

This work is partly funded by the Basic Research Action
CREWS (ESPRIT No. 21.903). CREWS stands for Coopera-
tive Requirements Engineering with Scenarios.

REFERENCES

[1]� A.I. Anton, W.M. Mc Cracken, and C. Potts, “Goal Decomposition
and Scenario Analysis in Business Process Reengineering,” Proc.
Sixth Int’l Conf. CaiSE ’94, Advanced Information Systems Eng., pp.
94–104, Utrecht, the Netherlands: Springer-Verlag, 1994.

[2]� A.I. Anton, “Goal Based Requirements Analysis,” Proc. Second
Int’l Conf. Requirements Eng., ICRE ’96, pp. 136–144, 1996.

[3]� C. Ben Achour, “Guiding Scenario Authoring,” Proc. Eighth Euro-
pean Japanese Conf. Information Modeling and Knowledge Bases, pp.
181–200, Ellivuori, Finland, May 1998.

[4]� J. Bubenko, C. Rolland, P. Loucopoulos, and V. De Antonellis,
“Facilitating ‘Fuzzy to Formal’ Requirements Modeling,” IEEE
First Conf. Requirements Eng., ICRE ’94, pp. 154–158, 1994.

[5]� A. Cockburn, “Structuring Use Cases with Goals,” technical re-
port, Human and Technology, HaT.TR.95.1, 84121, Salt Lake City,
Utah, 1995. http://members.aol.com/acocburn/papers/usecases.htm

[6]� B. Dano, H. Briand, and F. Barbier, “A Use Case Driven Require-
ments Eng. Process,” Proc. Third IEEE Int’l Symp. Requirements
Eng. RE ’97, Anapolis, Md., IEEE CS Press, 1997.

[7]� A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal Directed
Requirements Acquisition,” Science of Computer Programming, vol.
20, nos. 1/2, pp. 3–50, Apr. 1993.

[8]� A.M. Davis, Software Requirements: Objects, Functions and States.
Prentice Hall, 1993.

[9]� ELEKTRA consortium, “Electrical Enterprise Knowledge for
Transforming Applications—Athena Deliverable: Initial Re-
quirements for PPC,” ELEKTRA Project Internal Report, http:/
www.singular.gr/elektra, 1997.

[10]� ELEKTRA consortium, “Esprit Program 7.1, Technologies for
Business Processes, Best Business Practice Pilots,” Elektra: Electri-
cal Enterprise Knowledge for Transforming Applications. (Proj.
no. 22927) http://www.singular.gr/elektra, Jan. 1997-June 1999.

[11]� D. Filippidou and P. Loucopoulos, “Using Scenarios to Validate
Requirements in a Plausibility-Centred Approach,” Proc. Ninth
Int’l Conf. Advanced Information Systems Eng. CaiSE ’97, A. Olive,
ed., Barcelona, Springer-Verlag, June 1997.

[12]� I. Graham, Migrating to Object Technology. Addison-Wesley, 1995.
[13]� G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. Plihon, S. Si-Said,

C. Ben Achour, and C. Gnaho, “Modeling and Engineering the
Requirements Engineering Process: An Overview of the NATURE
Approach,” Requirements Eng. J., vol. 2, pp. 115–131, 1997.

[14]� C.H. Holbrook, “A Scenario-Based Methodology for Conducting
Requirements Elicitation,” ACM SIGSOFT, Software Eng. Notes,
vol. 15, no. 1, pp. 95–104, Jan. 1990.

[15]� I. Jacobson, “The Use Case Construct in Object-Oriented Software
Enginering,” Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development, J.M. Carroll, ed., pp. 309–336, John
Wiley & Sons, 1995.

[16]� I. Jacobson, Object Oriented Software Engineering, A Use Case Driven
Approach. Addison-Wesley, 1992.

[17]� P. Kardasis and P. Loucopoulos, “Aligning Legacy Information
System to Business Processes,” Proc. 10th Conf. Advanced Informa-
tion Systems Eng., CaiSE ’98, pp. 8–12, Pisa Italy, June, 1998.

[18]� J.C.S. do Prado Leite, G. Rossi, F. Balaguer, A. Maiorana, G. Kap-
lan, G. Hadad, and A. Oliveros, “Enhancing a Requirements
Baseline with Scenarios,” Proc. Third IEEE Int’l Symp. Requirements
Eng. RE ’97, pp. 44–53, Antapolis, Md., IEEE CS Press, 1997.

[19]� P. Loucopoulos, “The F3 (From Fuzzy to Formal) View on Re-
quirements Engineering,” Ingénierie des Systèmes d’Information,
vol. 2, no. 6, pp. 639–655, 1994.

[20]� P. Loucopoulos, V. Kavakli, and N. Prekas, “Using the EKD Ap-
proach, the Modeling Component,” ELEKTRA project internal re-
port, 1997.

[21]� S.Nurcan, G. Grosz, and C. Souveyet, “Describing Business Proc-
esses with a Use Case Driven Approach,” Proc. 10th Int’l Conf.
CaiSE ’98, Lecture Notes in Computer Science 1413, B. Pernici and
C. Thanos, eds., Pisa Italy, Springer, June 1998.

[22]� V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E.
Dubois, and P. Heymans, “A Reuse-Oriented Approach for the
Construction of Scenario Based Methods,” Proc. Int’l Software Pro-
cess Assoc. Fifth Int’l Conf. Software Process (ICSP ’98), Chicago, pp.
14–17, June 1998.

[23]� K. Pohl and P. Haumer, “Modeling Contextual Information about
Scenarios,” Proc. Third Int’l Workshop Requirements Eng.: Founda-
tions of Software Quality REFSQ ’97, pp. 187–204, Barcelona, June
1997.

[24]� C. Potts, K. Takahashi, and A.I. Anton, “Inquiry-Based Require-
ments Analysis,” IEEE Software, vol. 11, no. 2, pp. 21–32, 1994.

[25]� C. Potts, “Fitness for Use: the System Quality that Matters Most,”
Proc. Third Int’l Workshop Requirements Eng.: Foundations of Software
Quality REFSQ ’97, pp. 15–28, Barcelona, June 1997.

[26]� N. Prat, “Goal Formalisation and Classification for Requirements
Engineering,” Proc. Third Int’l Workshop Requirements Eng.: Founda-
tions of Software Quality REFSQ ’97, pp. 145–156, Barcelona, June
1997.

[27]� Rational Software Corp. Unified Modelling Language Version 1.1.,
available at http://www.rational.com/uml/documentation.html, 1998.

ROLLAND ET AL.: GUIDING GOAL MODELING USING SCENARIOS 1071

[28]� C. Rolland and C. Ben Achour, “Guiding the Construction of
Textual Use Case Specifications,” Data & Knowledge Eng. J. vol. 25,
no. 1, pp. 125–160, P. Chen and R.P. van de Riet, eds., North Hol-
land, Elsevier Science, Mar. 1997.

[29]� C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe,
N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl, Dubois, and P.
Heymans, “A Proposal for a Scenario Classification Framework,”
Requirements Eng. J., vol. 3, no. 1, pp. 23–47, 1998.

[30]� C. Rolland, S. Nurcan, and G. Grosz, “Guiding the Participative
Design Process,. Assoc. for Information Systems Americas Conf., In-
dianapolis, Ind., pp. 922–924, Aug. 1997.

[31]� J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modelling and Design. Prentice Hall, 1991.

[32]� S. Si-Said, “Guidance for Requirements Eng. Processes,” Proc.
Eighth Int’l Conf. and Workshop Database and Experts System Applica-
tion, DEXA ’97, Toulouse, France, Sept. 1997.

[33]� K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenario
Usage in System Development: A Report on Current Practice,”
IEEE Software, Mar. 1998.

[34]� E. Yu and J. Mylopoulos, “Using Goals, Rules and Methods to
Support Reasoning in Business Process Reengineering,” Proc. 27th
Hawaii Int’l Conf. System Sciences, Maui, Hawaii, vol. 4, pp. 234–
243, Jan. 1994.

Colette Rolland is currently professor of com-
puter science in the Department of Mathematics
and Informatics at the University of Paris-1, Pan-
théon Sorbonne. Her research interests lie in the
areas of information modeling, databases, tem-
poral data modeling, object-oriented analysis and
design, requirements engineering., design meth-
odologies, development process modeling, and
CASE tools. She has extensive experience in
participating in national and European research
projects under the ESPRIT program (projects

TODOS, BUSINESS CLASS, F3, NATURE, TOOBIS, ELKD, ELEKTRA,
and CREWS) and conducting cooperative projects with industry. She is
the French representative in IFIP TC8 on “Information Systems” and
chair of the IFIP Working Group WG8.1.

Carine Souveyet is associate-professor in the
Department of Mathematics and Informatics at
the University of Paris-1, Panthéon-Sorbonne.
Her research interests are directly related to
method engineering, requirement engineering,
temporal data modeling, and development
process modeling. She is/was a work group
leader in the F3 and TOOBIS ESPRIT projects
and has played an active role in the CREWS
ESPRIT project.

Camille Ben Achour received his BS and MS
degrees in computer science from the Pierre and
Marie Curie University in Paris, in 1993 and
1994, respectively. In December 1994 he joined
the research group of Professor Rolland at the
University of Paris-1, Panthéon-Sorbonne. He is
currently a PhD candidate on the topic of sce-
nario-based requirements engineering. His re-
search interests include requirements engineer-
ing, conceptual design, database theory, deduc-
tive databases, and object-oriented databases.

