
Eliciting and Specifying Requirements with Use Cases for Embedded Systems

Eman Nasr, John McDermid and Guillem Bernat
Department of Computer Science, University of York, UK

{eman.nasr, john.mcdermid, Guillem.Bernat}@cs.york.ac.uk

Abstract

This paper proposes enhancements to the use case
technique for eliciting and specifying requirements for
embedded systems. The work resulted from the
employment of the use case technique for the
requirements elicitation and specification of embedded
systems in an industrial context. The use case technique is
currently considered the state-of-the-art for handling
requirements, because of the many benefits it provides. In
spite of that, it still lacks proper definitions of the
technique’s constructs, and a well-defined process for
practically applying the technique for requirements
elicitation and specification. These are among the major
issues that make the technique not readily suitable for
employment for requirements elicitation and specification
of embedded systems. This paper attempts to fill in this
gap. The paper especially reports practical experience
with a real-life case study from the avionics industry. It
discusses the practical problems that were encountered
and provides solutions.

1. Introduction
The use case technique is currently considered the

state-of-the-art for handling software requirements
because of the many benefits it provides. It is widely
acknowledged in the use case literature that among the
important benefits of the use case technique are:
• Use cases elicit and specify requirements from the

user’s point of view.
• Use cases provide an excellent way for communicating

with stakeholders.
• The process of use case modelling helps in bringing

hidden requirements in the minds of the stakeholders to
the surface where they can be specified.

In spite of that, the practical application of the use
case technique to a real-life industrial case study for an
embedded system turned out to be confusing for the
following main reasons:
1- the use case technique lacks proper definitions of the

technique’s constructs to suit embedded systems,

2- the use case technique lacks a well defined process for
practically applying the technique, and

3- the relation between requirements and use cases is not
clear enough.

Although there is a considerable number of use case based
approaches published in the literature, e.g. [1-7], nothing
is readily suitable for the requirements elicitation and
specification of embedded systems. This paper is an
attempt to complement the literature by enhancing the
definitions of the use case technique’s constructs to better
suit embedded systems, and by providing step-by-step
guidance for the employment of use cases for
requirements elicitation and specification.

The approach presented in this paper emerged as a
result of experimenting with the use case technique for
requirements elicitation and specification for an
embedded system in an industrial context. The paper also
reports on the practical experience of using the use case
technique for a real-life case study from the avionics
industry. It discusses some of the practical problems that
were encountered and provides their suggested solutions.
In addition, the paper discusses the new necessary
concepts that were introduced to minimise the practical
confusion while eliciting and specifying the requirements
of an embedded system.

The paper is organised as follows. Section 2 gives an
overview of the industrial real-life case study and some of
its special properties. Section 3 discusses the main use
case technique’s modelling constructs in the light of their
suitability to embedded systems, and proposes solutions
for the confusing issues that we encountered during the
course of the work. Section 4 presents step-by-step
guidance for the employment of use cases for
requirements elicitation and specification of embedded
systems so as to minimise practical confusion. Finally,
Section 5 concludes.

2. Overview of the industrial case study –
Thrust Reverser Control System
This section gives an overview of the real-life

industrial case study, which is from an aviation industry
that specialises in the designed development of aeroplane
engines. The aim from the work was to propose

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

enhancements to the current software requirements
engineering process. The case study is about an embedded
control software that controls an aircraft’s Thrust
Reverser; namely, it is the Thrust Reverser Control
System (TRCS). The Thrust Reverser is a device fitted in
the exhaust system of an aeroplane engine that reverses
the flow of the exhaust gases. It is used to assist in the
deceleration of the Aeroplane and reduce the tear and
wear of the brakes.

The Thrust Reverser hardware on the aeroplane’s
engine of the case study includes [8, 9]:
• Two pivoting blocker doors each activated by an

hydraulic actuator.
• Four proximity sensors and two door position sensors to

monitor the Thrust Reverser doors.
• Four lock latches controlled by two lock motors for

opening and closing locks.
The TRCS is responsible for monitoring and controlling
most of the Thrust Reverser hardware components, in
addition to accepting commands and providing status
information.

Among the properties of the TRCS that were noticed
during the course of the study are:
1- The TRCS is deeply embedded in a highly complex

engineered system; i.e. the aeroplane system.
2- The software is tightly coupled to the hardware; i.e.

sensors and actuators, as it is responsible of
controlling engineering activities.

3- The physical design of the TRCS hardware is already
settled on.

4- Most of the functions of the TRCS are autonomous;
i.e. activated internally by the system every specific
time intervals.

5- Most of the external interactions of the TRCS are with
other systems rather than humans.

These special properties of the TRCS, which are general
to most embedded systems, pose special needs. The next
section discusses the suitability of the use case
technique’s modelling constructs in the light of the above
special properties, and offers solutions.

Figure 1: The use case technique’s main
modelling constructs.

3. Discussing the use case technique’s
modelling constructs
This section discusses the main use case modelling

constructs as defined by Jacobson in [10] in the light of

the case study’s, and embedded systems’, special
properties, and offers solutions for the needs we
encountered to avoid practical confusion. The use case
technique has four main modelling constructs, as shown
in Figure 1; System, Actor, Use Case, and Communication
Line. Each of the four constructs is discussed in one of the
following sub-sections.

3.1. The System construct
A System is modelled as a rectangle, as shown in

Figure 1, with its name below. Although Jacobson has
invented the System modelling notation for representing
the system boundary, and to distinguish between what lies
outside of the system under specification and what lies
inside of it, he has not emphasised and discussed its
pragmatics in his publications. In his publications he only
discusses the pragmatics of the Actor and the Use Case
constructs. We believe that this has led to finding, quite
often in the literature, use case models with only Actors
and Use Cases modelled without modelling the System.

We would like to emphasise the System construct and
define what we mean by it, as this will have later
implications on the rest of the use case modelling process.
For systems that are composed of hardware and software,
like that of our case study, and the domain of embedded
systems in general, we find it more appropriate to
consider the System to be the software and hardware
composite. Because of the context of embedded software,
which is usually deeply embedded in a larger highly
complex engineered system, control software functions,
which will be modelled as use cases, will usually control
the different hardware components that are within the
system boundary. It is difficult to separate software from
hardware in embedded systems during modelling the
requirements, as they are tightly coupled and highly
interactive. Considering systems as hybrid, encapsulates
the internal interaction between software and hardware
within the system boundary, and, therefore, simplifies the
use case model.

As soon as we reached such pragmatics for the System
construct, our confusion about what to model as a system,
the hardware or the software, was resolved. Therefore for
the TRCS case study, we considered the system to be the
software and hardware composite. The control software
functions, which will be modelled as use cases, will
control the Thrust Reverser hardware components,
mentioned in Section 2, which are within the TRCS
boundary.

3.2. The Actor construct
An Actor, modelled as a stick man in Figure 1 with its

name below, represents a specific role played by an entity
that resides outside the modelled system and interacts
directly with it. We have written the three main concepts
in the definition of an actor in bold, as they are crucial

Use case

Actor

System

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

keywords that could act as a rule of thumb for finding
actors, which we shall deal with in more detail in Section
4.3. In the rest of this section we give a discussion of
those three main concepts so as to eliminate practical
confusion and reduce the time for identifying actors.

For the first concept: an actor represents a role of an
external entity and not the external entity itself. This
applies for any external entity and not only to human
external entities. This is an issue that is overlooked by
most of the use case researchers including Jacobson
himself. That is why in Jacobson’s famous Automatic
Teller Machine (ATM) example, e.g. found in [10], he
mistakenly models the “Bank System” entity, which is an
external system to the ATM system (the System under
concern) that needs to interact with it, as an actor. This is
one of the major issues that cause practical confusion.
Jacobson didn’t stick to the definition he established for
an actor. If the role of a human external entity is the thing
that should be modelled in a use case model rather than
modelling the person, and hence a person can play several
roles towards the system under concern, then the same
should be done for the external system entity. Hence in
the ATM example the actor representing the “Bank
System”, should be one of the Bank System’s roles
towards the ATM instead, e.g. Account Handler. We
would also like to emphasise that an external entity could
be anything e.g. human or non-human (other systems,
software or hardware, a thunderstorm, a bird, … etc.).
This gives more flexibility to the pragmatics of the Actor
construct. The use case literature often implies that what
is meant by an external entity is either a human or another
system only.

For the second concept: an actor lies outside the
boundary of the modelled system. Therefore any entity
inside the boundary of the modelled system should not be
represented as an actor. Some use case literature, e.g. [1],
suggest representing time as an actor for systems that
involve functions activated in a certain interval of time.
But we view time to be part of the system, i.e. within the
boundary of the rectangular box, and we find it very
confusing to suddenly decide to take part of the system
outside of it, and model it external to the system when it
is not. We understand that this is a way for representing
an ill defined or a virtual actor, the terms introduced by
Zhang [11], but we’d rather strictly stick to an actor’s
definition for two main reasons. First, as most of the
functions for large complex embedded software are
periodic, if we choose to have a time actor, then we have
to model interaction between the time actor and all of the
periodic use cases, which will make a use case model
complex and less intuitive. Second, because we advocate
considering a system to be the hardware and software
composite, there will be other internal hardware sources
of the system that could activate functionality, e.g.
hardware errors. We also do not view the sensors that

belong to a system under specification to be external
entities; we view them to be internal sources for providing
information.

For the third concept: an actor has to directly interact
with the modelled system. Only actors that directly
interact with the modelled system should be modelled in a
use case model. Actors not interacting directly with the
system should not be modelled, but if necessary, e.g. to
help with the requirements elicitation phase, as we have
encountered in our real life case study, Section 3.4
proposes a solution.

3.3. The Use Case construct
The functionality of a system is defined by different

use cases, each of which represents a specific flow of
events. The description of a use case, modelled as an oval
shape in Figure 1 with its name inside, defines what
happens in the system, and how the system interacts with
the actors when the use case is performed.

Most of the use case literature emphasise that the use
cases should be defined in terms of interactions between
one or more external actors and the system to be
developed. They propose what we call an actor-based
strategy for identifying and defining use cases, as they
identify use cases by focusing on the purposes of the
actors and then define the interaction. However, not all
use cases for all systems interact with external actors;
there are systems that have significant functionality that is
not a reaction to an external actor. Embedded control
software systems provide a good example for such
systems where major control functions are performed
without significant external input. This makes the
traditional use case technique seem less appropriate for
such kinds of systems.

To offer a solution for such a limitation we would like
to be more general and introduce the notion that a use
case should focus on the purposes of the system as
required by the stakeholders. We would like to bring to
the surface and emphasise that use cases are defined
according to the stakeholders’ requirements in the first
place. This way, the total collection of use cases will form
really the complete functionality of the system under
specification, whether they are associated with actors or
not. In this way a use case could achieve a certain purpose
for an actor of the system or achieve a certain purpose of
the system being modelled. This results in the following
changes in the use case pragmatics:
• A use case can be initiated internally by the system, e.g.

according to time, and not only externally by an actor.
• A use case can describe internal functionality of a

system and not only its external behaviour.
Use cases have been mostly used as a starting point

for object-oriented analysis, design and implementation,
although they are not object oriented. This makes the
relationship between use cases and requirements fuzzy, as

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

it is very seldom explicit in the literature. This raises
questions like: are use cases requirements? If not, how do
they relate to them: do they originate from requirements?
Or is it the other way round, do requirements originate
from use cases? We would like to establish and emphasise
the use case – requirements relationship, which is that use
cases are repositories of requirements statements. A
requirement statement could originate from stakeholders
or from a previously written requirements document. The
process we give in Section 4 will provide guidance on
how to produce use cases that act as requirements
specifications for the system under consideration.

3.4. The Communication Line construct
Like the System construct, the Communication Line

construct has not been given enough attention in the
traditional use case technique. The communication
between an actor and a use case is modelled by using a
solid line, as shown in Figure 1. The Communication Line
links an actor to the relevant use case.

In the course of our work for the case study, we
confronted situations where we needed to temporarily
model indirect actors during the requirements elicitation
activity until the direct actors were resolved. This is
because there is usually some difficulty in identifying the
direct actors for deeply embedded systems, as they often
involve design decisions. We accounted for this by
creating a new construct to represent an indirect
communication link (see Figure 2) to be used only during
the requirements elicitation activity. For example, in an
Aeroplane system, the Pilot, as an actor, is responsible for
controlling all of the Aeroplane hardware. But if we are
concerned with modelling a system which is deeply
embedded in the Aeroplane, like that of the TRCS, the
Pilot will interact with this deeply embedded system
through at least one other system in the Aeroplane. Figure
2 illustrates this example by the use of our new indirect
communication link.

Figure 2: Indirect interaction of Pilot and a use
case of the TRCS.

As shown in Figure 2, the indirect communication link

notation is represented as a solid line going through a
small box. The small box added on top of the normal
communication line denotes a system, as most of the
indirect interaction with deeply embedded systems
happens through other systems.

4. Use case modelling process guidance
Most of the literature lack detailed step-by-step

guidance for the use case technique. This section gives
guidance for the use case modelling process. It is difficult
to provide detailed guidance supported by examples from
the industrial case study in this paper because of the size
limitation. Therefore, we discuss the steps and how to
achieve them using sub-steps, and only elaborate where
we introduce new concepts or steps to the use case
technique either to better suit the domain of embedded
systems or to fix a limitation. The process steps are not
meant to be strictly sequential, apart from the first step;
they are only given for guidance.

Our process employs use cases for requirements
elicitation and specification. Requirements elicitation is
the activity through which the requirements of a system
are discovered and elaborated through consultation with
stakeholders, from previous documents, and from domain
knowledge [12]. During the requirements elicitation
activity the boundary for the proposed system is also
defined. Ideally, whether a previous requirements
document exists or not, we advocate holding requirements
elicitation meetings that are facilitated by a Requirements
Engineer. These meetings should include as many
stakeholders as possible in order to provide coverage of
all necessary requirements information. In each meeting,
the meeting date and attendees should be registered as
well, because this information will be needed in
producing the final requirements documents so as to be
able to trace the source of the requirements. In cases
where a previous requirements document exists, like in
the case of reengineering an already existing system, and
the holding of requirements facilitation sessions are not
feasible, the steps of the process should also be followed
for elaborating and clarifying the requirements.

Each of the process steps is given in one of the
following sub-sections. Steps 1 through 6 form the
requirements elicitation activity, and Step 7 forms the
requirements specification activity, which results in
producing the requirements specification documents.

4.1. Defining the system
As we are employing use cases for the requirements

elicitation activity, defining the system under
specification is our first step in the process of use case
modelling. The first thing we need to establish is what
system we need to build. Most of the use case based
approaches in the literature don’t stress this first step. For
example, in the Unified Software Development Process
(USDP) [6], the first step is “Finding the Actors”. We
found that starting to define actors without first agreeing
on a definition for the embedded system to be built
resulted in identifying actors present in the application
domain, in a wider context, whom might not need to
communicate with the system under specification and thus

Use case

Pilot

TRCS

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

are out of our concern. That is why defining the system
first is our strategy for narrowing down the scope.
Besides, requirements cannot be effectively discussed at
all without prior agreement on the which system one is
talking about and at what level of abstraction. From our
experience defining the system is a crucial step to avoid
practical confusion and save requirements modelling time.
To elaborate more on how to achieve defining the system
step we give the following three sub-steps:
a) Naming the system. A name should be given to the

system under specification that makes sense to all of
the stakeholders of the system.

b) Eliciting system rationale. The system’s rationale is
a very important piece of information which is usually
overlooked. Identifying the rationale of the system
will add to the depth of understanding.

c) Writing a brief description of the system. This step
is to define the system generally, identify the overall
goals, and document the general features wanted. The
brief description of the system will serve as the
problem statement, and provide the starting point for
eliciting the requirements of the system.

For a hybrid system, like that of the TRCS case
study, if the system under specification is a low level
system, where the physical components of the system
are already settled on, the system hardware
components should also be included in the system
description together with a physical context diagram.
This is because the hardware is taken to be part of the
low level system, as explained before, and the control
requirements of the system will need to make explicit
reference to its components.

4.2. Defining developmental quality
requirements

Most of the use case based approaches in the literature
only concentrate on the behavioural requirements of the
system under consideration, and there is little guidance, if
any, on how to deal with the developmental quality
requirements. We introduce a ‘Defining Developmental
Quality Requirements’ step to overcome the limitation
identified in the current use case based approaches. This
step is to define the overall static requirements for the
system; i.e. the constraints placed on the whole system.
This includes requirements such as the desired
programming language for a software implementation,
software platform constraints, hardware design
constraints, the cost of the system, and regulatory
requirements. Defining the developmental quality
requirements of the system under consideration, involves
applying the following two sub-steps:
a) Eliciting the system’s developmental quality

requirements. A list should be created with all of the
developmental quality requirements for the system
under consideration. We used structured English

“shall” statements to specify the developmental
quality requirements. For example, to specify the
desired programming language for a software
implementation, the statement looked as follows: ‘The
system shall be implemented using Ada.’ Composing
questions as the following and looking for their
answers provide some guidelines for identifying the
developmental quality requirements:
i) Are there any standards that need to be followed?
ii) Are there any safety requirements for the system?
iii) Are there any requirements for the desired

programming language?
b) Numbering the developmental quality

requirements sentences. Each sentence of the
developmental quality requirements should be given a
unique number for traceability purposes.

4.3. Finding actors
Finding the actors of the system is a step that is

common to all of the use case based approaches in the
literature that provide a process, e.g. USDP [6]. In fact, it
is even considered to be the first step in most of their
processes, but there is very little guidance on how to
achieve this step. We provide guidance to overcome such
a limitation by recommending the following three sub-
steps:
a) Identifying the external entities that need to

interact with the system. By first identifying the
external entities that need to interact directly with the
system under specification, then analysing their roles
towards it, a candidate list of actors can be defined.
Identifying roles played by human entities towards the
system under specification are much easier than
identifying roles played by non-human entities. This is
because the roles of the human entities are often
reflected in the job/position title, which usually has a
clear definition and a set of defined responsibilities
[11], e.g. the Pilot and Maintainer in an Aeroplane
system. Therefore, in order to define a role for another
system entity (or any other non-human entity) that
needs to interact directly with the system under
specification, it should be clearly defined and its
responsibilities towards the system under specification
analysed. By identifying the responsibilities, roles (i.e.
actors) could be identified. By the use of this rule of
thumb the confusion about identifying actors for non-
human external entities will be eliminated.

b) Naming each actor. Each potential actor identified
should be given a name that makes sense to all of the
stakeholders of the system.

c) Describing briefly each actor. Creating a brief
description, which defines the actor and its
responsibility towards the system under specification.
This proved to be helpful in linking the actor to the
external entity that implements it.

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

4.4. Finding use cases
Finding the use cases of the system is also a step that

is common to all of the use case based approaches in the
literature that provide a process. However, most of the use
case based approaches have only one strategy for finding
use cases, which is actor-based. In our approach we don’t
only depend on the actor-based strategy to identify use
cases. Our main strategy for finding use cases is a system
function-based one to offer more flexibility and ability to
identifying all of the functional use cases of a system
under specification. We detail the following major three
sub-steps to achieve ‘finding use cases’ step:
a) Identifying the major functionality of the system.

Our strategy is to initially identify the major
functionality of the system, as use cases are what the
system does. As we mentioned before, the traditional
way in the use case based approaches to identify use
cases is to link them with the actors of the system by
identifying use cases for each actor found for the
system. Although this provides very useful guidance,
in the domain of embedded control software systems,
a major responsibility lies on the domain specialists to
identify what the system should do. This is because of
the nature of the domain; major autonomous use cases
would need to be performed by the system without the
need to interact with an external actor.

During the course of the TRCS case study, we
found that there are three major types of use case
functionality for an embedded control software
system, which are for:
• initialisation of the system;
• monitoring specific sensors, which results in

controlling specific actuators within the same use
case; and

• reporting status information.
It is also true that the system also accepts external
commands and reacts to them, but we don’t consider
this to provide with extra use case types as those
situations are usually documented within one of the
sequence of events of the use case types mentioned
above. We believe that the above three types of use
cases would form the basis of any embedded control
software system functionality. Indeed there might be
other types of functionality which we didn’t come
across in the course of our study, and that would need
to be further investigated to be able to provide a
comprehensive list of all types of possible use cases
for a software control system. We only mean that this
experience could be used for guidance so as not to
miss an important use case of the control software
system under specification.

The following questions could be used as
guidelines for identifying use cases:
i) What are the primary tasks that the system should

perform?

ii) Will the system need to perform any monitoring
functions?

iii) Will the system need to perform any control
functions?

iv) Will the system need to perform any initialisation
functions?

v) Will an actor need to create, store, change, remove
or read data in the system?

vi) Will an actor need to inform the system about
external information?

vii) Does an actor need to be informed about certain
occurrences in the system?

The above questions will help in generating a
candidate list of use cases for the system under
specification. From our experience with the real life
case study, we advise that care should be taken to only
identify what is needed from the system under
specification. In the domain of embedded control
software systems it is challenging to only describe the
functionality of the system under specification
because of the high interactiveness between it and
other embedded systems in the complex engineered
system. The definition of the system under
specification identified before should be always used
as a guide to help in limiting the scope.

b) Naming each use case. Choosing a proper use case
name is one of the confusing issues in the current use
case based approaches. Although not mentioned
explicitly in the literature, the traditional strategy for
naming use cases is to choose an active verb phrase
that indicates the purpose of the actor. As reported by
practitioners in [11], a possible ambiguity could arise
in naming, as sometimes a use case is named after the
behaviour of the actor instead of the system. A good
example for this ambiguity is Jacobson’s naming one
of the ATM system’s use cases “Withdraw Money,”
which is a function to be done by the “Client” actor
and not by the system. To eliminate such an ambiguity
we adopted Zhang’s rule [11] and adapted it to
account for use cases that are triggered internally by
the system to form the following rule to help with the
naming convention of a use case:

The <system name> is requested [by the <actor
name>] to perform <use case name>.

In the above rule, the phrase section between the
square brackets indicates that it is optional, as
according to our approach a use case could be
triggered by an actor or could be autonomous; i.e.
triggered by the system, as we previously emphasised
in Section 3.3. In the above rule the <system name>,
and the <actor name> (if applicable), are to be
replaced by the name of the system under
specification, and the name of an actor respectively, so
as to be able to reach a suitable <use case name>. In
this way the use case name reached will indicate what

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

the system under specification is to perform, and not
the actor. To give an example, we apply the above rule
to find a better name for the “Withdraw Money” use
case in Jacobson’s ATM example to get:

The ATM System is requested by the Client to
perform Dispense Money.

An a ATM System’s function is not to withdraw
money, but to dispense money instead.

A person might argue that it is obvious that the one
who will withdraw the money is the Client actor and
not the ATM system. To such an argument we reply
that this is obvious as this particular example is simple
and easy to envision, as the Client actor plays a role
implemented by a human entity. But when the system
gets complex, and the actors are implemented by non-
human entities, e.g. other interacting systems, there
has to be an unambiguous way for naming the use
case to obviously specify what the system under
consideration is requested to perform rather than the
external entity.

c) Describing briefly each use case. Creating a brief
description for each use case helps to define each use
case’s scope. The scope should indicate the area of
functionality that the use case will describe.

4.5. Creating the use case model
There is nothing different in creating the use case

model. It is a step common to all use case based
approaches in the literature.

4.6. Describing the use cases
For each identified use case, use case sequence of

events information should be elicited. The requirements
found in the set of use cases comprise the set of
requirements for the required system. For each use case
that has been identified the following four major sub-steps
should occur; this is an iterative process of progressive
refinement, which should be performed until the involved
stakeholders feel that all use cases have been described
satisfactorily:
a) Elaborating the use case brief description. For each

use case, the use case’s brief description previously
written should be elaborated. The purpose is to
provide with a structure around which the sequence of
events could be based.

b) Defining the use case’s flow of events. This step
should be done with the help of stakeholders in order
to provide coverage of all of the necessary information
for the use case. First, from the use case’s Brief
Description, the detailed flow of events of the use case
could be defined. Extending the Brief Description to
define the flow of events will ensure that the flow of
events is within the scope of the use case. Each single
step in the sequence of events forms a requirement
statement that we wrote on a separate line using

structured English shall statements. The flow of events
should include a description of pre-conditions, the
main flow of events, how and when the use case
begins and ends, when the use case will interact with
actors and what is exchanged between them, what the
system needs to do to perform a use case, how and
when the use case will need data stored in the system
or will store data in the system, exceptional events,
and post-conditions.

The initiation of a use case occurs whenever the
pre-conditions are met, and the starting event occurs.
Pre-conditions must always hold through the
execution of a use case; i.e. a violation of the pre-
conditions is not to be considered within the related
use case. This is one of the very confusing issues
about preconditions that is not well defined in the
literature.

c) Numbering the use case’s Flow of Events. After
listing the use case’s flow of events, each individual
sentence (requirement) should be uniquely identified
and numbered for requirements management and
traceability purposes.

d) Identifying the use case’s unresolved issues. The
unresolved issues of the use case should also be
documented. The purpose is to identify the existing
requirements that need greater clarification. These
identified use case unresolved issues should be listed
in an issues section within a use case document.

Figure 3: System Overview Document template.

<System Name>
Overview Document

1. History
1.1 Author

Identifies the author of the document.
1.2. Document Description

Identifies the purpose of the document and lists its contents.
1.3. Document Version

Contains document version number
1.4. Date of Document

Contains the document creation date.
1.5. Date of Elicitation

Contains the date of the elicitation session(s) held for the
purpose of creating this Overview Document.

1.6. Stakeholders and Roles
Identifies the names of the stakeholders sharing in the
elicitation session(s) for this System Overview document and
their respective roles within the elicitation session(s).

1.7. Other Sources of Information
2. System Rationale

Contains the rationale of building the system.
3. Description of the System
4. Names and Descriptions of the Actors

Contains names and brief descriptions of the actors involved in
system.

5. Candidate Use Cases
Lists the names of the candidate use cases.

6. Use Case Diagram
Contains the use case diagram of the system.

7. Developmental Quality Requirements
Lists any developmental quality requirements for the system.

8. Abbreviations/Acronyms/List of Terms
9. Issues

Contains issues identified that need to be resolved by the
stakeholders.

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

4.7. Authoring documents
We have two main documents for documenting the

requirements that result from the requirements elicitation
activity. The general system information is to be recorded
in a System Overview Document, named after the name
of the system, while the specific use case information is to
be documented in an Use Case Document, named after
the name of the use case.
a) Authoring the System Overview Document. This

document is important in that it gives context and
serves to define the specified system. It forms the
links between all the Use Case Documents and
contains how the use cases and actors fit together in
the form of a use case model. Figure 3 gives a general
template for what the System Overview Document
may contain.

b) Authoring Use Case Documents. For each use case
defined and described an Use Case Document should
be authored, which will be initially used for further
validation by the stakeholders. Figure 4 gives a
general template for what the Use Case Document
may contain.

Figure 4: Global Use Case Document Template.

5. Conclusions
This paper has presented enhancements for the use

case technique to better suit embedded systems. In the
light of an embedded control software system case study
from the aviation industry, the paper has provided
discussions of, and enhancements to, the main use case
constructs, in addition to providing step-by-step process
guidance for ease of practical application. We have
attempted to elaborate the relationship between
requirements and use cases, and employed use cases for
requirements elicitation and specification. Employing the

enhanced technique to the industrial case study offered
better understanding of the system, its environment, and
its workings; assistance in discovering missing
requirements information; better definition of system
boundary, which is a significant problem for requirements
engineering in the domain; controlling the repetition of
requirements, within and across system requirements
documents; and capturing behavioural requirements,
where functional requirements are linked to their
respective non-functional ones, e.g. timing requirements.
Although our approach emerged from the embedded
systems domain we contend that they are of wider
applicability and that it improves the practicality of the
use case technique in general.

Acknowledgments
This work has been funded by the European

Commission [PRECEPT (Promoting Requirements
Engineering from Current Engineering PracTices) project
25412]. We would like to acknowledge the input of the
PRECEPT partner, Phillips Research Laboratories,
Surrey, to the use case modelling process guidelines.

References
[1] Schneider, G. and J. P. Winters. Applying Use Cases: A

Practical Guide. Addison-Wesley, 1998.
[2] Jacobson, I., M. Christerson, P. Jonsson and G.

Oevergaard. Object Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

[3] Jacobson, I., M. Ericsson and A. Jacobson. The Object
Advantage: Business Process Reengineering With Object
Technology. ACM Press, 1995.

[4] Douglass, B. P. Real-Time UML: Developing Efficient
Objects For Embedded Systems. Addison-Wesley, 1998.

[5] Awad, M., J. Kuusela and J. Ziegler. Object-Oriented
Technology for Real-Time Systems: A Practical Approach
Using OMT and Fusion. Prentice-Hall, 1996.

[6] Jacobson, I., G. Booch and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[7] Robertson, S. and J. Robertson. Mastering the
Requirements Process. Addison Wesley, 1999.

[8] A330 Flight Crew Operating Manual.
[9] Control System Airframe Interface Document for the

BR700-715 C1-30 MD95 Application. E-TR 386/96-(IR)-
ISS03. BMW Rolls-Royce AeroEngines, 1997.

[10] Jacobson, I. The Use-Case Construct in Object-Oriented
Software Engineering. In J.M. Carroll, (ed.) Scenario-
Based Design: Envisioning Work and Technology in
System Development, pp. 309-336, John Wiley and Sons,
1995.

[11] Zhang, D. D. Use Case Modeling for Real-Time
Application. In Proceedings of The Fourth International
Workshop on Object-Oriented Real-Time Dependable
Systems, pp. 56-64. IEEE Computer Society, 1999.

[12] Loucopoulos, P. and V. Karakostas. System Requirements
Engineering. McGraw Hill, 1995.

<Use Case Name>
Use Case Document

1. History
1.1. Author
1.2. Document Description
1.3. Document Version
1.4. Date of Document
1.5. Date of Elicitation
1.6. Stakeholders and Roles
1.7. Other Sources of Information

2. Rationale
3. Participating Actors
4. Brief Description
5. Flow of Events

5.1 Pre-Conditions
5.2 Main Flow of events

5.2.1 Normal Sequence
5.2.2 Alternative Events
5.2.3 Exceptional Events

5.3 Post-Conditions

6. Associations to other use cases

7. References to other documents

8. Traceability

9. Abbreviations/Acronyms/List of Terms

10. Issues

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

