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Abstract

One of the generic phases of software engineering 

is the requirements analysis.  This paper presents a 

new method for automatically retrieving functional 

requirements from the stakeholders using agile 

processes.  The presented system is a machine learning 

system for the automation of some aspects of the 

software requirements phase in the software 

engineering process.  This learning system 

encompasses knowledge acquisition and belief revision 

in a knowledge base. It is based on Tecuci’s multi-

strategy task-adaptive learning by justification trees 

algorithm, known as Disciple-MTL, and supports a few 

of the practices that Extreme Programming (XP) 

requires.  The aim of the algorithm is to collect 

information from the various stakeholders and 

integrate a variety of learning methods in the 

knowledge acquisition process, while involving certain 

and plausible reasoning.   The result of the 

manipulation is a list of requirements essential to a 

software system. 

1. Introduction 

In the requirements analysis phase, it is essential 

that we define what it is we plan to develop.  This is 

achieved by interviewing all, or most of, the 

stakeholders.  Stakeholders are people who have an 

interest in the system, or people who will use the 

system.  They are involved in the definition stage of 

the system.  Different stakeholders can hold different 

views about what the software should or should not 

contain.  In addition, there are always some vague 

issues, which were not discussed.  The developer 

cannot and should not guess what to do in these cases.   

New ways should be thought of, in order to make the 

analysis as complete as possible. 

Automating the process of building knowledge 

bases has long been the goal of both knowledge 

acquisition and machine learning.  The focus of 

knowledge acquisition has been to improve and 

partially automate the acquisition of knowledge from 

an expert by a knowledge engineer.  In contrast, 

machine learning has focused on mostly autonomous 

algorithms for acquiring knowledge from data and for 

knowledge compilation and organization.  Automation 

of knowledge acquisition should be based on a direct 

interaction between a human expert and a learning 

system [8], [23]. 

In the past few years, XP and other Agile Software 

processes have started to gain considerable impact on 

software development [6].  The depicted system assists 

in the integration of XP, by implementing some of its 

practices.  Instead of having one human expert, I am 

involving all those of interest in the software 

requirements phase, the stakeholders.  The system and 

the stakeholder work in synergy: the system relies on 

input from the stakeholder to guide its learning 

process.  Nevertheless, the stakeholder does not need 

to know much about the knowledge base or enter all 

the new necessary knowledge explicitly, but can rely 

on the tool to guide the knowledge acquisition process. 

Our system attempts to collect information from the 

various stakeholders, and manipulate this data.  The 

result of the manipulation is a list of functional 

requirements essential to a software system.  A 

plausible justification tree [21] is constructed from the 

information collected from the first stakeholder.  Other 

stakeholders improve, correct and complete the tree, by 

adding additional pieces of knowledge that extend and 

add branches to the tree, or remove inconsistent 

branches.  This process continues until there are no 

more stakeholders and the result tree meets the 

required standards.  The output general rules are then 

structured from the tree. 

Our system supports XP due to the numerous 

iterations performed and the close collaboration with 

the stakeholders.  It is not easy to decide which of the 

growing multitude of Agile Processes to deploy in the 

first place.  It requires much experience and a thorough 

understanding to select and tailor a new process to 
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meet the specific requirements and constraints of a 

given software project [1], [15].  I hope the system 

prototyped eases the process. 

2. Background 

Software engineering is comprised of a set of steps 

that encompass methods, tools, and procedures, which 

are referred to as software engineering paradigms.  

Regardless of the software engineering paradigm, the 

software development process contains three generic 

phases.  These are definition, development and 

maintenance.  The “definition” phase includes the 

requirements analysis and specification.  Requirements 

analysis is a software engineering task that bridges the 

gap between system level software allocation and 

software design.   

As requirements engineering is concerned with the 

interpretation and translation of the initial informal 

needs, the elicitation of requirements is perhaps the 

activity most often regarded as the “first” step in the 

requirements engineering process. 

The requirements analysis task is a process of 

discovery, refinement, modeling and specification.  

Both the developer and the customer take an active 

role in requirements analysis and specification.  The 

customer attempts to reformulate an imprecise concept 

of software function and performance into concrete 

detail.  The developer acts as interrogator, consultant 

and problem solver.   

Requirements analysis and specification may 

appear to be a relatively simple task, but appearances 

are deceiving.  The first set of qualities required of 

specifications is that they should be clear, 

unambiguous and understandable.  A complete 

understanding of software requirements is essential to 

the success of a software development effort.  No 

matter how well designed or well coded, a poorly 

analyzed and specified program will disappoint the 

user and bring grief to the developer [5], [14].   

Knowledge-based systems offer more flexible ways 

of using a computer than former, standard approaches 

of programming could do.  However, without a means 

to build up the knowledge base efficiently, the better 

performance of a knowledge-based system is 

outweighed by the efforts of constructing and 

maintaining the knowledge base.  Therefore, 

knowledge acquisition and machine learning have 

become key issues in artificial intelligence.  This 

process of building a knowledge base underlies all 

kinds of formalizing applications, whether they are in 

software or knowledge engineering [11]. 

XP is a discipline of software development based 

on values of simplicity, communication, feedback and 

courage.  It works by bringing the whole team together 

in the presence of simple practices, with enough 

feedback to enable the team to see where they are and 

to tune the practices to their unique situation.  It is a 

very social way of developing software, and it is team-

oriented.  As opposed to other development 

approaches, XP lacks an investment in up-front design 

and documentation, but rather encourages 

communication and discussion [16].  XP builds up to a 

dozen practices that XP projects should follow [2]. It

places a premium on the customer-development 

relationship, requiring an on-site customer.  Both the 

customer and the developer have clearly defined roles 

with distinct responsibilities, interacting on a daily 

basis [25].  Programmers must learn to interact with 

the customer to discover what is required in user 

stories.

Applications of machine learning systems show 

that the initial domain theory provided by the user and 

possibly completed by the machine learning system 

tends to be incomplete and inconsistent.  Furthermore, 

machine-learning systems may add incorrect concept 

definitions they have learned from incorrect example 

descriptions or insufficient domain theory.  This must 

be solved by automatically revising inconsistent and 

incomplete domain theories.  Some propositional 

systems were considered, and a few were even 

implemented [7].   

In building business software requirements changes 

are the norm, the question is what we do about it.  One 

route is to treat changing requirements as the result of 

poor requirements engineering.  Everything in 

software development depends on the requirements. If 

you cannot get stable requirements, you cannot get a 

predictable plan [4], [6].   

3. Multi-Strategy Task-Adaptive 

Learning

A learning process is activated by the input 

information, obtained from a teacher or from a 

learner’s environment (external or internal).  Such a 

process involves the learner’s prior knowledge 

(background knowledge), and is motivated by the 

learner’s desire to achieve some goal (to solve a 

problem, to understand given facts or observations, or 

to perform a task).  The learning goal defines the 

criteria for determining the relevant parts of prior 

knowledge, choosing the learning strategy, evaluating 

acquired knowledge, selecting the most preferred 

hypothesis among the candidate ones, etc.  The goal 
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also plays a major role in determining the amount of 

effort the learner should extend in pursuing any 

specific strategy.  Thus, learning can be viewed as a 

process of transforming input information into the 

desired knowledge by the use of inference and under 

the guidance of the learner’s goal. 

The primary inference type performed in any 

learning act is determined by a “triad” relationship that 

involves the input, background knowledge and the 

current learning task.  This primary inference defines 

the “learning strategy”.  The strategy is inductive, if 

the input consists of one or more facts, and/or 

previously generated descriptions existing in the 

learner’s background knowledge, and the task is to 

generalize the facts and/or improve the descriptions so 

that the resulting knowledge is useful for solving some 

new problems.  It is analogical, if the input is “similar” 

to what the learner already knows, and the task is to 

make a decision about the input that would take 

advantage of the similar past experience.  It is 

deductive, if the input is principally entailed by what 

the learner already knows (background knowledge), 

but the relevant parts of background knowledge are not 

efficient or directly useful for the learner, and the 

learning task is to transform these parts into a better 

form. 

In order to learn, an agent needs to be able to 

perform transformations of knowledge.  Research in 

machine learning has elaborated several single-strategy 

learning methods like, for instance, empirical 

induction, explanation-based learning, learning by 

abduction, learning by analogy, case-based learning, 

which are based on a primary type of inference and 

illustrate different ways in which a system can learn 

[3]. 

Both empirical learning, which primarily exploits 

data, and analytical learning, which primarily exploits 

prior knowledge, are useful methodologies for some 

domains of application.  However, most practical 

problems seem to fit neither the empirical nor the 

analytic paradigm.  This is because most practical 

problems involve to a significant extent both prior 

knowledge and new facts, and the prior knowledge is 

often incomplete and/or inconsistent. 

While past machine learning has been primarily 

oriented toward single-strategy systems, more recent 

research has been increasingly concerned with building 

systems that integrate two or more learning strategies.  

Single strategies are inherently limited as each of them 

applies only to a range of problems.  Such systems are 

limited to solving only certain classes of learning 

problems, defined by the type of input information 

they can learn from, the type of operations they are 

able to perform on the given knowledge representation, 

and the type of output knowledge they can produce. 

Hence, by properly integrating the various single-

strategy methods, one could obtain a synergistic effect 

in which different strategies mutually support each 

other and compensate for each other’s weaknesses.  To 

extend the capabilities of machine learning programs it 

is vital to build systems that integrate various 

strategies.  Each of the multi-strategy learning systems 

that have been built in the last several years illustrates 

a specific way in which several single-strategy 

methods could be integrated in order to perform a 

learning task that could not be performed by a single-

strategy method [17].

Due to a complementary nature of many learning 

strategies, multistrategy systems have a potentially 

greater ability to solve diverse learning problems than 

a single-strategy system.  On the other hand, because 

multistrategy systems are more complex, their 

implementation presents a significant research 

challenge.  An open and ever challenging problem for 

machine learning research is to develop a system that 

would integrate a whole spectrum of learning 

strategies, and would be able to decide by itself which 

strategy is most suitable in any given learning 

situation.  Humans are clearly able to apply a great 

variety of learning strategies depending on the problem 

at hand, and machine-learning system should try to 

ultimately match this ability. 

In multistrategy task-adaptive learning, learning 

strategies are combined dynamically, according to the 

task at hand.  Research on multistrategy task-adaptive 

learning attempted to develop a methodology, which 

for any learning task can recognize what learning 

strategy, or combination thereof, is likely to be the 

most effective for solving it (hence, the term “task-

adaptive”).  The key idea is that any learning process 

can be viewed as a derivation of desired knowledge 

from the input information according to the principle 

of computational economy.  What is “desired” 

knowledge depends on the task the learner wants to 

perform.  How the learner proceeds to obtain this 

knowledge (learning strategy) depends on what is the 

most effective way to utilize the available information 

and the learner’s prior knowledge. 

The problem of multistrategy learning is not 

building the mechanisms but their integration and 

control.  The control aspect requires knowledge about 

the learning strategies: their performance, 

functionality, representation, accuracy, etc.  For 

multistrategy learning to successfully work, a good 

understanding of machine learning techniques must be 

developed.  The automatic use of multiple learning 

strategies and programs for solving hard learning 

problems is an important problem that attracts new 
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research effort.  Reich in [17] describes a system that 

uses the manual systematic approach for designing 

systems that acquire knowledge in complex domains 

known as M2LTD.  It guides the designer of a large 

learning program in decomposition, selection and 

specification procedures.  It brings BRIDGER, a 

system that assists in the design of cable-stayed 

bridges, as an example for the use of M2LTD.  Two 

multistrategy systems are incorporated in BRIDGER.  

The user of one of the systems determines which 

learning strategies are used in a specific learning 

scenario, since the automatic control of these strategies 

is complex. 

Michalski in [9] and [10] concentrates on 

developing an adequate and general computation 

model for applying a great variety of learning 

strategies in a flexible and multi goal-oriented fashion 

and for dynamically accommodating the demands of 

changing learning situations.  He investigates the 

principles and tradeoffs characterizing diverse learning 

strategies, attempts to understand their capabilities and 

interrelationships, to determine conditions for their 

most effective applicability and to develop a general 

theory of multistrategy learning. 

Our system is based on Disciple.  Disciple [20] is 

an apprenticeship, multi-strategy integrated learning 

system that can be taught by an expert how to perform 

domain-specific tasks in a way an apprentice would be 

taught by the expert.  Disciple illustrates a theory and a 

methodology for learning expert knowledge in the 

context of an imperfect domain theory.  It integrates a 

learning system and an empty expert system, both 

using the same knowledge base.  It is initially provided 

with an imperfect (non-homogeneous) domain theory 

and learns problem solving rules from the problem 

solving steps received from its expert user, during 

interactive problem solving sessions.  In this way, it 

evolves from a helpful assistant in problem solving to 

a genuine expert. 

Increasingly complex versions of the Disciple 

approach have been implemented in the learning 

apprentice systems Disciple.   They have been applied 

in a variety of domains, such as in the military domain, 

[18], [24], banking [12] and history education [19], 

[24].   

4. Plausible Justification Trees 

A plausible justification tree is a demonstration that 

the input is a plausible consequence of the knowledge 

base.  The learning method consists of building, 

generalizing, and/or specializing plausible justification 

trees of the input examples, and in generalizing and/or 

specializing the knowledge base so as to entail these 

trees.

The Multi-strategy Task-adaptive Learning based 

on building plausible Justification Trees (MTL-JT) 

integrates deeply and dynamically explanation-based 

learning, determination-based analogy, empirical 

induction, constructive induction, and abduction, in 

order to learn from one or from several positive (and 

negative) concept examples.  The learning task of 

MTL-JT is both a theory revision task and a concept-

learning task. 

The framework attempts to automate the multi-

strategy process.  It proposes that instead of integrating 

the learning strategies at a macro level, we will 

integrate the different inference types that generate the 

individual learning strategies.  By this we achieve a 

deep integration of the learning strategies.  The 

framework also bases learning on building and 

generalizing a special type explanation structure called 

plausible justification tree which is composed of 

different types of inference and relates the learner's 

knowledge to the input.  In this framework, learning 

consists of extending and/or improving the knowledge 

base of the system so that to explain the input received 

from an external source of information. 

In a general learning scenario, the system has an 

incomplete and inconsistent knowledge base (domain 

model), and it receives new input information about 

the application domain.  The input may take different 

forms. It may be a ground fact. It may consist of one or 

several positive and/or negative examples of a concept. 

It may also consist of one or several positive (and 

negative) examples of problem solving episodes, each 

episode specifying a problem and its solution.  The 

goal of the system is to improve its knowledge base so 

as to consistently integrate the information contained 

in the input. More precisely, after learning from an 

input I, the knowledge base should be such that a 

generalization of I is inferable from the knowledge 

base.  The general learning strategy is based on 

understanding the input in terms of the current 

knowledge base. This means that the system will try to 

build a plausible justification tree that demonstrates 

that the input is a plausible consequence of the 

knowledge from the knowledge base.  A plausible 

justification tree is like a proof tree, except that the 

inferences, which compose it, may be the result of 

different types of reasoning (not only deductive, but 

also analogical, abductive, probabilistic, fuzzy, etc.). 

An important feature of MTL-JT is that it behaves 

as a single-strategy learning method whenever the 

learning task of MTL-JT is specialized to the learning 

task of the respective single-strategy method. This 

shows that MTL-JT is a generalization of the 
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integrated learning strategies, which not only takes

advantage of their complementarity, but also inherits

their features 

5. The Methodology 

An initial knowledge base is constructed according

to the first stakeholder’s interview.  The information in

the knowledge base is incomplete and could perhaps 

be inconsistent, as there are more stakeholders to be

interviewed.  Manipulation of this initial data will

construct DC – deductive closure.  That is, all the data

that can be retrieved from the information provided by

the first stakeholder using deductive reasoning. This

data is then expanded using the various reasoning

methods to contain the plausible justification tree built 

on the initial data.  That is the PC – plausible closure.

Employing plausible reasoning significantly increases

the number of problems that can be solved by the

system.  However, at the same time, many of the

solutions proposed by the system will be wrong. The

goal of the algorithm is to extend and correct the

knowledge base system until it meets the required 

specification. Correction of the knowledge base is

achieved by adding new facts.  The deductive closure

of this final knowledge base is called AC – Acceptable

deductive closure.

Figure 1. Data manipulation

Multi-strategy task-adaptive learning by

justification trees has a great potential for automating

the process of building knowledge-based systems.  It is

a type of learning, which integrates dynamically

different learning strategies, depending upon the

characteristics of the learning task to be performed.

Based on that, a new methodology and tool has been

developed called Disciple-MTL, for building verified

knowledge based systems, which also have the

capability of continuously improving themselves

during their normal use.  It provides an expert with a 

powerful methodology and tool for building expert

systems, significantly reducing or even eliminating the

need of assistance from a knowledge engineer.

The process of building a knowledge base system

consists of two stages: Building an initial knowledge

base for a general inference engine and developing the

knowledge base until it satisfies required specification. 

During the first stage, the expert generates a list of

typical concepts, organizes the concepts, and encodes a 

set of rules and various correlations between

knowledge pieces, which will permit the system to 

perform various types of plausible reasoning. This

initial knowledge base is usually incomplete and

partially incorrect.  During the second stage, the

knowledge base is developed until it becomes

complete and correct enough to meet the required

specifications.

Employing plausible reasoning significantly

increases the number of problems that could be solved

by the system.  At the same time, however, many of

the solutions proposed by the system will be wrong.

The goal of the knowledge base development is to

extend and correct the knowledge base of the system

until it meets the required specifications.

In the first phase, the system performs a complex

reasoning process building the most plausible and 

simple justification tree which shows that the training

input indicated by the expert (consisting of a problem

P and its expert-recommended solution S) is correct

[21], [22].  Because this is the most plausible and 

simple justification tree, which shows that S is a 

correct solution for P, the component implications and

statements are hypothesized to be true, and are asserted 

into the knowledge base. 

In the second phase, the system reuses the

reasoning process performed in the previous phase in

order to further extend and also to correct the

knowledge base, so as to be able to solve problems

from the class of which P is an example, problems

similar to the example provided by the expert. The

expert will be requested to judge if the results achieved

by the system are correct or not.  If the answer is

correct, the knowledge base will be extended to 

include the example in it. If the answer is incorrect, 

the wrong implications made by the system will have

to be identified and the knowledge base will be

corrected accordingly. 

5.1 Building the plausible justification tree 

The root of the tree is the input fact (an example of 

the fact that the expert wants the system to learn). The

leaves are facts from the knowledge base, and the

intermediate nodes are intermediate facts generated

during the understanding process. The branches

connected to any given node link this node with facts,

the conjunction of which certainly or plausible implies

the fact at the node, according to the learner’s

knowledge base.  The notion “plausibly implies”

means that the target (parent node) can be inferred
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from the premises (children nodes) by some form of 

plausible reasoning using the learner’s knowledge 

base.  The branches together with the nodes they link 

represent individual inference steps, which could be 

the result of different types of reasoning.   

The method for building such a tree is conducting 

top-down uniform cost search [13] in the spaces of all 

AND trees, which have a depth of at most p, where p is 

a parameter, set by the expert.  The cost of a partial 

AND tree is computed as a tupple (m, n), where m 

represents the number of the deductive inference steps 

in the tree, and n represents the number of the non-

deductive inference steps.  The ordering relationship 

for the cost function is defined as follows: (m1, n1) < 

(m2, n2) if and only if n1<n2 or (n1=n2 and m1<m2).  

This guarantees to find deductive tree, if exists, with 

the fewest inference steps. 

When considering new example, the system tries to 

generalize the current justification tree so as to cover a 

justification of the new positive example.  At the same 

time, it may also generalize the knowledge base if this 

is needed in order to entail the new tree. 

First of all, the system determines the instance of 

the general tree corresponding to the new example.  

The system then analyzes the leaf predicates and the 

inference steps from this proof tree.  If the leaf 

predicates are true and the inference steps are 

plausible, then the tree is a plausible justification of the 

new positive example that is already covered by the 

general justification tree (original).  This ends the 

processing of the current example.  That is, the new 

example is already covered by the plausible tree that 

we have, so no further processing is required.  

However, if this is not the case, a reasoning method 

should be applied.   

The next step of the learning process is to build the 

explanation structure, which has three general 

components to be unified: 

The part of the tree from the generalized 

justification tree of the knowledge base that 

covers part of the plausible justification tree of 

the example. 

The part that is specific to the generalized 

justification tree of the knowledge base. 

The generalization of the part of the tree in the 

example that is specific to it. 

The initial tree building is time consuming.  The 

generation of the addition is simple matching and 

instantiation process, and is therefore rather quick.  

The plausible justification tree is generalized by 

generalizing each implication and by globally unifying 

all these generalizations. 

An important feature of the presented method is 

that it behaves as a single-strategy learning method 

whenever the applicability conditions of such a method 

are satisfied, and the learning task of MTL is 

specialized to the learning task of the single strategy 

method.  This feature is important because it shows 

that the MTL method is a generalization of the 

integrated learning strategies that not only takes 

advantage of the complementarity of the integrated 

strategies, but also inherits the features of theses 

strategies.

6. Experimentation 

As a concrete example, I have chosen to deal with 

the functional requirements for building a self-

corporate care system for the telephony industry.  

Communication service providers today face an 

enormous challenge in managing relationships with 

large corporate customers.  Corporate customers are 

more complex to manage, and require more attention 

and a high level of service.  With advanced Web self-

service technologies, corporate customers can manage 

their own users, equipment, services, bills, orders and 

trouble tickets.  It is thus imperative to have an 

appropriate self-service framework to support the 

unique and complex needs of corporate customers. 

The self-corporate system allows the service 

provider to empower large customers such as college 

campuses, hotels or large industrial companies, to 

support themselves over the Web.  It also enables the 

corporate customer’s telephone departments and other 

administrators to manage their own internal 

telecommunication operations.  This allows them to 

take responsibility for level one support, i.e., setting up 

a new phone, disconnecting, basic changes (new 

service), replacing bad equipment, etc., while the 

telecommunication company is responsible for level 

two support, i.e., actually fixing the equipment, solving 

service and provisioning problems, etc. 

The system enables customers to have a significant 

amount of management functionality over their 

telephone resources.  By providing the customer with 

this level of control over internal changes and internal 

services provisions, the service provider can reduce the 

level of effort required in servicing the customer, while 

enhancing customer support and promoting customer 

satisfaction. 

Out of this domain I have selected about a dozen 

requirements (figure 2).   
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1. System should be able to manipulate general 
account information (change or delete personal 
data or address details). 

2. System should be able to manipulate password 
(set/change/reset).

3. System should allow viewing of account 
information using web interface. 

4. System should allow exporting account information 
to MS-Office applications. 

5. System should allow exporting account information 
to PDF format. 

6. System should allow viewing bill summary statistics 
using web interface. 

7. System should allow exporting bill summary 
statistics to MS-Office applications. 

8. System should be able to generate bill summary 
statistics in PDF format. 

9. System should allow viewing bill statistics using 
web interface. 

10. System should allow exporting bill statistics to MS-
Office applications. 

11. System should be able to generate bill statistics in 
PDF format. 

12. System should allow modification of trouble tickets. 
13. System should allow to remove/delete trouble 

tickets.

Figure 2. Requirements elicited from stakeholder 

Each of the requirements was depicted as a Horn 

Clause that describes general rules and facts (figure 3).   

manipulate(X) :- perform_change(X), perform_delete(X). 
view(X,Y) :- isa(X,data), isa(Y,application). 
supports(X,required-formats) :- view(X,web), 

view(X,pdf), view(X,ms-office). 
manage(X) :- allows_to_view(X,Y), manipulate(Y), 

supports(Y,required-formats).
perform_change (trouble-ticket). 
perform_change(account-info).
peform_delete(trouble-ticket).
view(bill-statistics,pdf).
view(bill_summary_statistics,pdf).
view(account-info,ms-office).
view(account-info,pdf).
view(bill_summary_statistics,web).
view(bill_statistics,web).
allows_to_view(account,account-info).

Figure 3. Initial knowledge base generated

These requirements served to build the initial 

knowledge base.  This data was allegedly retrieved 

from the first stakeholder.  The algorithm was then 

applied to these requirements and a set of final 

requirements was generated.   Figure 4 describes a 

plausible justification tree for a new fact 

manage(account).  We can see that the tree generated 

the new plausible rules:  

perform_change(Y):~perform_delete(Y). 

view(Y,pdf):~view(Y,web).

7. Conclusions 

Properly defining the requirements is a crucial and 

integral part of the requirements analysis phase.  

Knowing what it is we want to develop and correctly 

defining it plays an important role in the software 

engineering field.  This paper aims to automate and 

ease the requirements elicitation process by describing 

a machine learning system using a knowledge base that 

applies some of the practices of Extreme 

Programming.  The system also supports elements of 

knowledge acquisition and knowledge refinement.  

Our system demonstrates the use of the MTL-JT 

algorithm in the field of software engineering, a field 

in which it was not previously implemented.  It was 

able to test sample requirements from various 

stakeholders and produce a set of requirements that can 

serve as final requirements. 
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Figure 4. Plausible justification tree for manage(account)
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