
Automatic Requirements Elicitation in Agile Processes

Ronit Ankori (Lurya)

Computer Science Dept., Bar Ilan University, Ramat Gan, Israel

luryar@cs.biu.ac.il

Abstract

One of the generic phases of software engineering

is the requirements analysis. This paper presents a

new method for automatically retrieving functional

requirements from the stakeholders using agile

processes. The presented system is a machine learning

system for the automation of some aspects of the

software requirements phase in the software

engineering process. This learning system

encompasses knowledge acquisition and belief revision

in a knowledge base. It is based on Tecuci’s multi-

strategy task-adaptive learning by justification trees

algorithm, known as Disciple-MTL, and supports a few

of the practices that Extreme Programming (XP)

requires. The aim of the algorithm is to collect

information from the various stakeholders and

integrate a variety of learning methods in the

knowledge acquisition process, while involving certain

and plausible reasoning. The result of the

manipulation is a list of requirements essential to a

software system.

1. Introduction

In the requirements analysis phase, it is essential

that we define what it is we plan to develop. This is

achieved by interviewing all, or most of, the

stakeholders. Stakeholders are people who have an

interest in the system, or people who will use the

system. They are involved in the definition stage of

the system. Different stakeholders can hold different

views about what the software should or should not

contain. In addition, there are always some vague

issues, which were not discussed. The developer

cannot and should not guess what to do in these cases.

New ways should be thought of, in order to make the

analysis as complete as possible.

Automating the process of building knowledge

bases has long been the goal of both knowledge

acquisition and machine learning. The focus of

knowledge acquisition has been to improve and

partially automate the acquisition of knowledge from

an expert by a knowledge engineer. In contrast,

machine learning has focused on mostly autonomous

algorithms for acquiring knowledge from data and for

knowledge compilation and organization. Automation

of knowledge acquisition should be based on a direct

interaction between a human expert and a learning

system [8], [23].

In the past few years, XP and other Agile Software

processes have started to gain considerable impact on

software development [6]. The depicted system assists

in the integration of XP, by implementing some of its

practices. Instead of having one human expert, I am

involving all those of interest in the software

requirements phase, the stakeholders. The system and

the stakeholder work in synergy: the system relies on

input from the stakeholder to guide its learning

process. Nevertheless, the stakeholder does not need

to know much about the knowledge base or enter all

the new necessary knowledge explicitly, but can rely

on the tool to guide the knowledge acquisition process.

Our system attempts to collect information from the

various stakeholders, and manipulate this data. The

result of the manipulation is a list of functional

requirements essential to a software system. A

plausible justification tree [21] is constructed from the

information collected from the first stakeholder. Other

stakeholders improve, correct and complete the tree, by

adding additional pieces of knowledge that extend and

add branches to the tree, or remove inconsistent

branches. This process continues until there are no

more stakeholders and the result tree meets the

required standards. The output general rules are then

structured from the tree.

Our system supports XP due to the numerous

iterations performed and the close collaboration with

the stakeholders. It is not easy to decide which of the

growing multitude of Agile Processes to deploy in the

first place. It requires much experience and a thorough

understanding to select and tailor a new process to

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

meet the specific requirements and constraints of a

given software project [1], [15]. I hope the system

prototyped eases the process.

2. Background

Software engineering is comprised of a set of steps

that encompass methods, tools, and procedures, which

are referred to as software engineering paradigms.

Regardless of the software engineering paradigm, the

software development process contains three generic

phases. These are definition, development and

maintenance. The “definition” phase includes the

requirements analysis and specification. Requirements

analysis is a software engineering task that bridges the

gap between system level software allocation and

software design.

As requirements engineering is concerned with the

interpretation and translation of the initial informal

needs, the elicitation of requirements is perhaps the

activity most often regarded as the “first” step in the

requirements engineering process.

The requirements analysis task is a process of

discovery, refinement, modeling and specification.

Both the developer and the customer take an active

role in requirements analysis and specification. The

customer attempts to reformulate an imprecise concept

of software function and performance into concrete

detail. The developer acts as interrogator, consultant

and problem solver.

Requirements analysis and specification may

appear to be a relatively simple task, but appearances

are deceiving. The first set of qualities required of

specifications is that they should be clear,

unambiguous and understandable. A complete

understanding of software requirements is essential to

the success of a software development effort. No

matter how well designed or well coded, a poorly

analyzed and specified program will disappoint the

user and bring grief to the developer [5], [14].

Knowledge-based systems offer more flexible ways

of using a computer than former, standard approaches

of programming could do. However, without a means

to build up the knowledge base efficiently, the better

performance of a knowledge-based system is

outweighed by the efforts of constructing and

maintaining the knowledge base. Therefore,

knowledge acquisition and machine learning have

become key issues in artificial intelligence. This

process of building a knowledge base underlies all

kinds of formalizing applications, whether they are in

software or knowledge engineering [11].

XP is a discipline of software development based

on values of simplicity, communication, feedback and

courage. It works by bringing the whole team together

in the presence of simple practices, with enough

feedback to enable the team to see where they are and

to tune the practices to their unique situation. It is a

very social way of developing software, and it is team-

oriented. As opposed to other development

approaches, XP lacks an investment in up-front design

and documentation, but rather encourages

communication and discussion [16]. XP builds up to a

dozen practices that XP projects should follow [2]. It

places a premium on the customer-development

relationship, requiring an on-site customer. Both the

customer and the developer have clearly defined roles

with distinct responsibilities, interacting on a daily

basis [25]. Programmers must learn to interact with

the customer to discover what is required in user

stories.

Applications of machine learning systems show

that the initial domain theory provided by the user and

possibly completed by the machine learning system

tends to be incomplete and inconsistent. Furthermore,

machine-learning systems may add incorrect concept

definitions they have learned from incorrect example

descriptions or insufficient domain theory. This must

be solved by automatically revising inconsistent and

incomplete domain theories. Some propositional

systems were considered, and a few were even

implemented [7].

In building business software requirements changes

are the norm, the question is what we do about it. One

route is to treat changing requirements as the result of

poor requirements engineering. Everything in

software development depends on the requirements. If

you cannot get stable requirements, you cannot get a

predictable plan [4], [6].

3. Multi-Strategy Task-Adaptive

Learning

A learning process is activated by the input

information, obtained from a teacher or from a

learner’s environment (external or internal). Such a

process involves the learner’s prior knowledge

(background knowledge), and is motivated by the

learner’s desire to achieve some goal (to solve a

problem, to understand given facts or observations, or

to perform a task). The learning goal defines the

criteria for determining the relevant parts of prior

knowledge, choosing the learning strategy, evaluating

acquired knowledge, selecting the most preferred

hypothesis among the candidate ones, etc. The goal

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

also plays a major role in determining the amount of

effort the learner should extend in pursuing any

specific strategy. Thus, learning can be viewed as a

process of transforming input information into the

desired knowledge by the use of inference and under

the guidance of the learner’s goal.

The primary inference type performed in any

learning act is determined by a “triad” relationship that

involves the input, background knowledge and the

current learning task. This primary inference defines

the “learning strategy”. The strategy is inductive, if

the input consists of one or more facts, and/or

previously generated descriptions existing in the

learner’s background knowledge, and the task is to

generalize the facts and/or improve the descriptions so

that the resulting knowledge is useful for solving some

new problems. It is analogical, if the input is “similar”

to what the learner already knows, and the task is to

make a decision about the input that would take

advantage of the similar past experience. It is

deductive, if the input is principally entailed by what

the learner already knows (background knowledge),

but the relevant parts of background knowledge are not

efficient or directly useful for the learner, and the

learning task is to transform these parts into a better

form.

In order to learn, an agent needs to be able to

perform transformations of knowledge. Research in

machine learning has elaborated several single-strategy

learning methods like, for instance, empirical

induction, explanation-based learning, learning by

abduction, learning by analogy, case-based learning,

which are based on a primary type of inference and

illustrate different ways in which a system can learn

[3].

Both empirical learning, which primarily exploits

data, and analytical learning, which primarily exploits

prior knowledge, are useful methodologies for some

domains of application. However, most practical

problems seem to fit neither the empirical nor the

analytic paradigm. This is because most practical

problems involve to a significant extent both prior

knowledge and new facts, and the prior knowledge is

often incomplete and/or inconsistent.

While past machine learning has been primarily

oriented toward single-strategy systems, more recent

research has been increasingly concerned with building

systems that integrate two or more learning strategies.

Single strategies are inherently limited as each of them

applies only to a range of problems. Such systems are

limited to solving only certain classes of learning

problems, defined by the type of input information

they can learn from, the type of operations they are

able to perform on the given knowledge representation,

and the type of output knowledge they can produce.

Hence, by properly integrating the various single-

strategy methods, one could obtain a synergistic effect

in which different strategies mutually support each

other and compensate for each other’s weaknesses. To

extend the capabilities of machine learning programs it

is vital to build systems that integrate various

strategies. Each of the multi-strategy learning systems

that have been built in the last several years illustrates

a specific way in which several single-strategy

methods could be integrated in order to perform a

learning task that could not be performed by a single-

strategy method [17].

Due to a complementary nature of many learning

strategies, multistrategy systems have a potentially

greater ability to solve diverse learning problems than

a single-strategy system. On the other hand, because

multistrategy systems are more complex, their

implementation presents a significant research

challenge. An open and ever challenging problem for

machine learning research is to develop a system that

would integrate a whole spectrum of learning

strategies, and would be able to decide by itself which

strategy is most suitable in any given learning

situation. Humans are clearly able to apply a great

variety of learning strategies depending on the problem

at hand, and machine-learning system should try to

ultimately match this ability.

In multistrategy task-adaptive learning, learning

strategies are combined dynamically, according to the

task at hand. Research on multistrategy task-adaptive

learning attempted to develop a methodology, which

for any learning task can recognize what learning

strategy, or combination thereof, is likely to be the

most effective for solving it (hence, the term “task-

adaptive”). The key idea is that any learning process

can be viewed as a derivation of desired knowledge

from the input information according to the principle

of computational economy. What is “desired”

knowledge depends on the task the learner wants to

perform. How the learner proceeds to obtain this

knowledge (learning strategy) depends on what is the

most effective way to utilize the available information

and the learner’s prior knowledge.

The problem of multistrategy learning is not

building the mechanisms but their integration and

control. The control aspect requires knowledge about

the learning strategies: their performance,

functionality, representation, accuracy, etc. For

multistrategy learning to successfully work, a good

understanding of machine learning techniques must be

developed. The automatic use of multiple learning

strategies and programs for solving hard learning

problems is an important problem that attracts new

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

research effort. Reich in [17] describes a system that

uses the manual systematic approach for designing

systems that acquire knowledge in complex domains

known as M2LTD. It guides the designer of a large

learning program in decomposition, selection and

specification procedures. It brings BRIDGER, a

system that assists in the design of cable-stayed

bridges, as an example for the use of M2LTD. Two

multistrategy systems are incorporated in BRIDGER.

The user of one of the systems determines which

learning strategies are used in a specific learning

scenario, since the automatic control of these strategies

is complex.

Michalski in [9] and [10] concentrates on

developing an adequate and general computation

model for applying a great variety of learning

strategies in a flexible and multi goal-oriented fashion

and for dynamically accommodating the demands of

changing learning situations. He investigates the

principles and tradeoffs characterizing diverse learning

strategies, attempts to understand their capabilities and

interrelationships, to determine conditions for their

most effective applicability and to develop a general

theory of multistrategy learning.

Our system is based on Disciple. Disciple [20] is

an apprenticeship, multi-strategy integrated learning

system that can be taught by an expert how to perform

domain-specific tasks in a way an apprentice would be

taught by the expert. Disciple illustrates a theory and a

methodology for learning expert knowledge in the

context of an imperfect domain theory. It integrates a

learning system and an empty expert system, both

using the same knowledge base. It is initially provided

with an imperfect (non-homogeneous) domain theory

and learns problem solving rules from the problem

solving steps received from its expert user, during

interactive problem solving sessions. In this way, it

evolves from a helpful assistant in problem solving to

a genuine expert.

Increasingly complex versions of the Disciple

approach have been implemented in the learning

apprentice systems Disciple. They have been applied

in a variety of domains, such as in the military domain,

[18], [24], banking [12] and history education [19],

[24].

4. Plausible Justification Trees

A plausible justification tree is a demonstration that

the input is a plausible consequence of the knowledge

base. The learning method consists of building,

generalizing, and/or specializing plausible justification

trees of the input examples, and in generalizing and/or

specializing the knowledge base so as to entail these

trees.

The Multi-strategy Task-adaptive Learning based

on building plausible Justification Trees (MTL-JT)

integrates deeply and dynamically explanation-based

learning, determination-based analogy, empirical

induction, constructive induction, and abduction, in

order to learn from one or from several positive (and

negative) concept examples. The learning task of

MTL-JT is both a theory revision task and a concept-

learning task.

The framework attempts to automate the multi-

strategy process. It proposes that instead of integrating

the learning strategies at a macro level, we will

integrate the different inference types that generate the

individual learning strategies. By this we achieve a

deep integration of the learning strategies. The

framework also bases learning on building and

generalizing a special type explanation structure called

plausible justification tree which is composed of

different types of inference and relates the learner's

knowledge to the input. In this framework, learning

consists of extending and/or improving the knowledge

base of the system so that to explain the input received

from an external source of information.

In a general learning scenario, the system has an

incomplete and inconsistent knowledge base (domain

model), and it receives new input information about

the application domain. The input may take different

forms. It may be a ground fact. It may consist of one or

several positive and/or negative examples of a concept.

It may also consist of one or several positive (and

negative) examples of problem solving episodes, each

episode specifying a problem and its solution. The

goal of the system is to improve its knowledge base so

as to consistently integrate the information contained

in the input. More precisely, after learning from an

input I, the knowledge base should be such that a

generalization of I is inferable from the knowledge

base. The general learning strategy is based on

understanding the input in terms of the current

knowledge base. This means that the system will try to

build a plausible justification tree that demonstrates

that the input is a plausible consequence of the

knowledge from the knowledge base. A plausible

justification tree is like a proof tree, except that the

inferences, which compose it, may be the result of

different types of reasoning (not only deductive, but

also analogical, abductive, probabilistic, fuzzy, etc.).

An important feature of MTL-JT is that it behaves

as a single-strategy learning method whenever the

learning task of MTL-JT is specialized to the learning

task of the respective single-strategy method. This

shows that MTL-JT is a generalization of the

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

integrated learning strategies, which not only takes

advantage of their complementarity, but also inherits

their features

5. The Methodology

An initial knowledge base is constructed according

to the first stakeholder’s interview. The information in

the knowledge base is incomplete and could perhaps

be inconsistent, as there are more stakeholders to be

interviewed. Manipulation of this initial data will

construct DC – deductive closure. That is, all the data

that can be retrieved from the information provided by

the first stakeholder using deductive reasoning. This

data is then expanded using the various reasoning

methods to contain the plausible justification tree built

on the initial data. That is the PC – plausible closure.

Employing plausible reasoning significantly increases

the number of problems that can be solved by the

system. However, at the same time, many of the

solutions proposed by the system will be wrong. The

goal of the algorithm is to extend and correct the

knowledge base system until it meets the required

specification. Correction of the knowledge base is

achieved by adding new facts. The deductive closure

of this final knowledge base is called AC – Acceptable

deductive closure.

Figure 1. Data manipulation

Multi-strategy task-adaptive learning by

justification trees has a great potential for automating

the process of building knowledge-based systems. It is

a type of learning, which integrates dynamically

different learning strategies, depending upon the

characteristics of the learning task to be performed.

Based on that, a new methodology and tool has been

developed called Disciple-MTL, for building verified

knowledge based systems, which also have the

capability of continuously improving themselves

during their normal use. It provides an expert with a

powerful methodology and tool for building expert

systems, significantly reducing or even eliminating the

need of assistance from a knowledge engineer.

The process of building a knowledge base system

consists of two stages: Building an initial knowledge

base for a general inference engine and developing the

knowledge base until it satisfies required specification.

During the first stage, the expert generates a list of

typical concepts, organizes the concepts, and encodes a

set of rules and various correlations between

knowledge pieces, which will permit the system to

perform various types of plausible reasoning. This

initial knowledge base is usually incomplete and

partially incorrect. During the second stage, the

knowledge base is developed until it becomes

complete and correct enough to meet the required

specifications.

Employing plausible reasoning significantly

increases the number of problems that could be solved

by the system. At the same time, however, many of

the solutions proposed by the system will be wrong.

The goal of the knowledge base development is to

extend and correct the knowledge base of the system

until it meets the required specifications.

In the first phase, the system performs a complex

reasoning process building the most plausible and

simple justification tree which shows that the training

input indicated by the expert (consisting of a problem

P and its expert-recommended solution S) is correct

[21], [22]. Because this is the most plausible and

simple justification tree, which shows that S is a

correct solution for P, the component implications and

statements are hypothesized to be true, and are asserted

into the knowledge base.

In the second phase, the system reuses the

reasoning process performed in the previous phase in

order to further extend and also to correct the

knowledge base, so as to be able to solve problems

from the class of which P is an example, problems

similar to the example provided by the expert. The

expert will be requested to judge if the results achieved

by the system are correct or not. If the answer is

correct, the knowledge base will be extended to

include the example in it. If the answer is incorrect,

the wrong implications made by the system will have

to be identified and the knowledge base will be

corrected accordingly.

5.1 Building the plausible justification tree

The root of the tree is the input fact (an example of

the fact that the expert wants the system to learn). The

leaves are facts from the knowledge base, and the

intermediate nodes are intermediate facts generated

during the understanding process. The branches

connected to any given node link this node with facts,

the conjunction of which certainly or plausible implies

the fact at the node, according to the learner’s

knowledge base. The notion “plausibly implies”

means that the target (parent node) can be inferred

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

from the premises (children nodes) by some form of

plausible reasoning using the learner’s knowledge

base. The branches together with the nodes they link

represent individual inference steps, which could be

the result of different types of reasoning.

The method for building such a tree is conducting

top-down uniform cost search [13] in the spaces of all

AND trees, which have a depth of at most p, where p is

a parameter, set by the expert. The cost of a partial

AND tree is computed as a tupple (m, n), where m

represents the number of the deductive inference steps

in the tree, and n represents the number of the non-

deductive inference steps. The ordering relationship

for the cost function is defined as follows: (m1, n1) <

(m2, n2) if and only if n1<n2 or (n1=n2 and m1<m2).

This guarantees to find deductive tree, if exists, with

the fewest inference steps.

When considering new example, the system tries to

generalize the current justification tree so as to cover a

justification of the new positive example. At the same

time, it may also generalize the knowledge base if this

is needed in order to entail the new tree.

First of all, the system determines the instance of

the general tree corresponding to the new example.

The system then analyzes the leaf predicates and the

inference steps from this proof tree. If the leaf

predicates are true and the inference steps are

plausible, then the tree is a plausible justification of the

new positive example that is already covered by the

general justification tree (original). This ends the

processing of the current example. That is, the new

example is already covered by the plausible tree that

we have, so no further processing is required.

However, if this is not the case, a reasoning method

should be applied.

The next step of the learning process is to build the

explanation structure, which has three general

components to be unified:

The part of the tree from the generalized

justification tree of the knowledge base that

covers part of the plausible justification tree of

the example.

The part that is specific to the generalized

justification tree of the knowledge base.

The generalization of the part of the tree in the

example that is specific to it.

The initial tree building is time consuming. The

generation of the addition is simple matching and

instantiation process, and is therefore rather quick.

The plausible justification tree is generalized by

generalizing each implication and by globally unifying

all these generalizations.

An important feature of the presented method is

that it behaves as a single-strategy learning method

whenever the applicability conditions of such a method

are satisfied, and the learning task of MTL is

specialized to the learning task of the single strategy

method. This feature is important because it shows

that the MTL method is a generalization of the

integrated learning strategies that not only takes

advantage of the complementarity of the integrated

strategies, but also inherits the features of theses

strategies.

6. Experimentation

As a concrete example, I have chosen to deal with

the functional requirements for building a self-

corporate care system for the telephony industry.

Communication service providers today face an

enormous challenge in managing relationships with

large corporate customers. Corporate customers are

more complex to manage, and require more attention

and a high level of service. With advanced Web self-

service technologies, corporate customers can manage

their own users, equipment, services, bills, orders and

trouble tickets. It is thus imperative to have an

appropriate self-service framework to support the

unique and complex needs of corporate customers.

The self-corporate system allows the service

provider to empower large customers such as college

campuses, hotels or large industrial companies, to

support themselves over the Web. It also enables the

corporate customer’s telephone departments and other

administrators to manage their own internal

telecommunication operations. This allows them to

take responsibility for level one support, i.e., setting up

a new phone, disconnecting, basic changes (new

service), replacing bad equipment, etc., while the

telecommunication company is responsible for level

two support, i.e., actually fixing the equipment, solving

service and provisioning problems, etc.

The system enables customers to have a significant

amount of management functionality over their

telephone resources. By providing the customer with

this level of control over internal changes and internal

services provisions, the service provider can reduce the

level of effort required in servicing the customer, while

enhancing customer support and promoting customer

satisfaction.

Out of this domain I have selected about a dozen

requirements (figure 2).

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

1. System should be able to manipulate general
account information (change or delete personal
data or address details).

2. System should be able to manipulate password
(set/change/reset).

3. System should allow viewing of account
information using web interface.

4. System should allow exporting account information
to MS-Office applications.

5. System should allow exporting account information
to PDF format.

6. System should allow viewing bill summary statistics
using web interface.

7. System should allow exporting bill summary
statistics to MS-Office applications.

8. System should be able to generate bill summary
statistics in PDF format.

9. System should allow viewing bill statistics using
web interface.

10. System should allow exporting bill statistics to MS-
Office applications.

11. System should be able to generate bill statistics in
PDF format.

12. System should allow modification of trouble tickets.
13. System should allow to remove/delete trouble

tickets.

Figure 2. Requirements elicited from stakeholder

Each of the requirements was depicted as a Horn

Clause that describes general rules and facts (figure 3).

manipulate(X) :- perform_change(X), perform_delete(X).
view(X,Y) :- isa(X,data), isa(Y,application).
supports(X,required-formats) :- view(X,web),

view(X,pdf), view(X,ms-office).
manage(X) :- allows_to_view(X,Y), manipulate(Y),

supports(Y,required-formats).
perform_change (trouble-ticket).
perform_change(account-info).
peform_delete(trouble-ticket).
view(bill-statistics,pdf).
view(bill_summary_statistics,pdf).
view(account-info,ms-office).
view(account-info,pdf).
view(bill_summary_statistics,web).
view(bill_statistics,web).
allows_to_view(account,account-info).

Figure 3. Initial knowledge base generated

These requirements served to build the initial

knowledge base. This data was allegedly retrieved

from the first stakeholder. The algorithm was then

applied to these requirements and a set of final

requirements was generated. Figure 4 describes a

plausible justification tree for a new fact

manage(account). We can see that the tree generated

the new plausible rules:

perform_change(Y):~perform_delete(Y).

view(Y,pdf):~view(Y,web).

7. Conclusions

Properly defining the requirements is a crucial and

integral part of the requirements analysis phase.

Knowing what it is we want to develop and correctly

defining it plays an important role in the software

engineering field. This paper aims to automate and

ease the requirements elicitation process by describing

a machine learning system using a knowledge base that

applies some of the practices of Extreme

Programming. The system also supports elements of

knowledge acquisition and knowledge refinement.

Our system demonstrates the use of the MTL-JT

algorithm in the field of software engineering, a field

in which it was not previously implemented. It was

able to test sample requirements from various

stakeholders and produce a set of requirements that can

serve as final requirements.

8. Acknowledgements

The author of this paper wishes to thank Prof. Uri

Schild for his continuous support and belief.

9. References

[1] Bailey, P., Ashworth, N., Wallace, N., “Challenges

for Stakeholders in Adopting XP”, in Third International

Conference on eXtreme Programming and Agile Processes

in Software Engineering (XP2002), 2002.

[2] Beck, K. Extreme Programming Explained, Addison-

Wesley, 2000.

[3] Carbonell, J.G., Michalski, R.S., Mitchell, T.M., “An

Overview of Machine Learning”, in Carbonell, J.G.,

Michalski, R.S., Mitchell, T.M. (editors), Machine Learning:

An Artificial Intelligence Approach, Tioga Publishing

Company, Palo Alto, CA, 1983.

[4] Fowler, M., “The New Methodology”, online at:

http://www.martinfowler.com/articles/newMethodology.html

, April, 2003.

[5] Ghezzi, C, Jazayeri, M., Mandrioli D., Fundamentals

of Software Engineering, Prentice Hall, second edition, New

Jersey, 2003.

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

[6] Heinecke, H., Noack, C., Schweizer, D.,

“Constructing Agile Software Processes”, in Third

International Conference on eXtreme Programming and

Agile Processes in Software Engineering (XP2002), 2002.

[7] Kodratoff, Y., “Industrial Application of ML:

Illustrations for the KAML Dilemma and the CBR Dream”

in Luc de Raedt and Francesco Bergadano (editors), Machine

Learning: ECML-94, volume 784 of Lecture Notes in

Artificial Intelligence, Springer-Verlag, pp. 3-19, 1994.

[8] Langley, P., Elements of Machine Learning, Morgan

Kaufman Publishers, San Francisco, CA, 1996.

[9] Michalski, R.S., “Toward a Unified Theory of

Learning: Multistrategy Task-Adaptive Learning”, Reports

of Machine Learning and Inference Laboratory, MLI 90-1,

Center for Artificial Intelligence, George Mason University,

Fairfax, VA, 1990.

[10] Michalski, R.S., “Inferential Theory of Learning:

Developing Foundations for Multistrategy Learning”, in

Michalski, R.S. and Tecuci, G. (Editors), Machine Learning:

A Multistrategy Approach, Vol. 4, Morgan Kaufman, San

Mateo, CA, 1994.

[11] Morik, K., Wrobel, S., Kietz, J.U., Emde W.,

Knowledge Acquisition and Machine Learning: Theory,

Methods and Applications, Academic Press, London, 1993.

[12] Nedellec C., Correia J., Ferreira J. L., Costa E.,

“Machine Learning goes to the Bank,” Applied Artificial

Intelligence, special issue on applications of ML, 1994.

[13] Nilsson, N., Problem Solving Methods in Artificial

Intelligence, McGraw-Hill, 1971.

[14] Pressman R.S., Software Engineering: Practitioner’s

Approach, McGraw-Hill, third edition, Berkshire, 1994.

[15] Radding, A., “Extremely Agile Programming”,

ComputerWorld, Online at:

http://www.computerworld.com/softwaretopics/software/app

dev/story/0,10801,67950,00.html, February, 2002.

[16] Rasmusson, J., “Introducing XP into Greenfiled

Projects: Lessons Learned”, IEEE Software, IEEE

Computer Society, California, February, 2002, pp. 21-28.

[17] Reich, Y., “Macro and Micro Perspectives of

Multistrategy Learning”, in Michalski, R.S. and Tecuci, G.

(Editors), Machine Learning: A Multistrategy Approach, Vol.

4. Morgan Kaufman, San Mateo, CA, 1994.

[18] Tecuci, G., Hieb, M.R., “Teaching Intelligent

Agents: the Disciple Approach”, International Journal of

Human Computer Interaction, 1996, Vol. 8, No. 3, pp. 259-

285.

[19] Tecuci, G., Keeling, H., “Teaching an Agent to Test

Students” in Proc. 15th International Conf. on Machine

Learning, Morgan Kaufman, San Francisco, CA, 1998, pp.

565-573.

[20] Tecuci, G., Kodratoff, Y., “Apprenticeship Learning

in Imperfect Domain Theories”, in Kodratoff Y. and

Michalski, R.S. (Editors), Machine Learning: An Artificial

Intelligence Approach, Vol. 3. Morgan Kaufman, San

Mateo, CA, 1990.

[21] Tecuci, G., “Plausible justification trees: a

framework for the deep and dynamic integration of learning

strategies”, Machine Learning, 1993, 11:237-261.

[22] Tecuci, G., “An Inference-Based Framework for

Multistrategy Learning”, in Michalski, R.S. and Tecuci, G.

(Editors), Machine Learning: A Multistrategy Approach,

Morgan Kaufman, San Mateo, CA, 1994.

[23] Tecuci, G., “Building knowledge bases through

multi-strategy learning and knowledge acquisition”, in

Tecuci, G. and Kodratoff, Y. (Editors), Machine Learning

and Knowledge Acquisition: Integrated Approaches,

Academic Press, London, 1995.

[24] Tecuci, G. (with contributions from the LALAB

members Dybala T., Hieb M., Keeling H., Wright K.,

Loustaunau P., Hille D., Lee S.W.), Building Intelligent

Agents: An Apprenticeship Multistrategy Learning Theory,

Methodology, Tool and Case Studies, Academic Press,

London, 1998.

[25] Wood, W., Kleb, W. L., “Exploring XP for

Scientific Research”, IEEE Software, IEEE Computer

Society, CA, May-June 2003, pp. 30-36.

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

Figure 4. Plausible justification tree for manage(account)

Proceedings of the IEEE International Conference on Software - Science, Technology & Engineering (SwSTE’05)
0-7695-2335-8/05 $ 20.00 IEEE

