
AN IIWEGRWED
ENVIRONMENT FOR

Studies show that
the greatest leverage to

improve quality lies
in supporting the

collection of correct,
unambiguous

requirements. Such
an environment

must support
collaborative work.

JAMES D. PALMER and N. ANN FIELDS
George Mason University

o improve quality, soha re develop- T ers need comprehensive techniques
that use systematic, integrated, consistent,
and enterprise-wide approaches. Produc-
tivity, quality, and sound project manage-
ment are functions of how well an inte-
grated support environment encourages
the best use of people, policies, processes,
and plans.

If we are to deliver high-quality soft-
ware that meets the customers’ needs, we
must apply integrated support for devel-
opment at the point of greatest leverage.
Recent studies indicate that the greatest
leverage points to influence the produc-
tion of quality software are coincident with

8 0 07407459/92/0500/0080/$03 00 0 IEEE

the phases in which we expend the fewest
resources.’

These studies show that five percent of
the total cost of a major system is expended
on design and development, yet 70 per-
cent of the ability to influence quality
comes &om this meager amount. In terms
of effort, requirements analysis consumes
merely five percent, but affords SO percent
of the leverage to influence improved
quality. In terms of preproduction costs,
system definition absorbs five percent, yet
again provides 50 percent of the leverage
to influence quality,

In other words, it takes 100 times more
effort to correct errors in requirements

M A Y 1 9 9 2

discovered at the time of coding than it
does to correct the same errors if they are
discovered during requirements engi-
neering.2

Developers have long given lip service
to the development of hgh-quality re-
quirements, yet this area is rarely a focus of
research. We believe the value added in
producing hgh-quality (correct, testable,
and unambiguous) requirements is suffi-
ciently great to warrant concentration in
th~s area.

OUR ENVIRONMENT

We have developed an integrated envi-
ronment for requirements engineering
that supports participatory development
activities. Our environment helps ensure
quality by supporting and encouraging
group participation and interaction.

Our computer-supported cooperative-
work environment supports the develop-
ment and analysis ofsystem- and software-
level requirements for large, complex
applications. It encompasses and coordi-
nates all aspects of requirements develop-
ment, from conceptual inspiration,
through planning, to specisc project details.

Case studies of groups using this envi-
ronment show it can support require-
ments engineering for groups of users de-
termining system-level requirements for
large, complex systems. It can also support
the interactive and iterative activities that
take place between users and require-
ments-engineering teams, including

+ requirements elicitation,
+ classification,
+ analysis,
+ traceability,
+ validation, and
+ design

whch can lead to test-plan generation. Its
open archtecture means you can integrate
commercial CASE tools as appropriate,
and, although it was designed to support
requirements development, there’s no
reason you can’t extend it to other phases
of the development life cycle.

SUPPORTING GROUPS

neering projects are mherently group ef-
forts undertaken by developers, managers,
and users who represent development and
application from all perspectives.

Requirements engineering is the elici-
tation, analysis, classification, and design
of systems and software requirements. It
incorporates many functions methods, and
approaches applied by users and designers.

In an evolutionary life cycle, require-
ments engineering is a major, continuous
activity whose most important function is
to specify a system that will meet the users’
perceived needs. We have found it is desir-
able and necessary to involve users in re-
quirements elicitation and validation to
ensure that their view of the system is rep-
resented correctly.

Our environment has two capabilities
that are key to the elicitation of correct,
complete, and unambiguous information:

+ it can help you obtain useful infor-
mation firom individuals or groups and

+ the information it captures can be
represented in appropriate media formats.

To help the requirements engineer ob-
tain useful information from users, we’ve
incorporated small-group interaction
techniques in the environment and devel-
oped tools to help support group interac-
tion. To let engineers represent the cap-
tured information in appropriate formats,
our multimedia environment supports the
capture and manipulation of information
as text, graphics, audio, and video.

Our multimedia-based environment
uses rapid prototyping and takes into ac-
count the crmtmt, not just the form, of re-
quirements. It provides for the presenta-
tion of concepts and prototypes that lead
to formal specifications. Its CASE tools let
users manage problems like imprecise,
ambiguous, and incomplete require-
ments.

ARCHITECWRE

Our environment runs on an Apple
Macintosh FX with 8M bytes of RAM,
160 Mbytes of disk storage, analog video
I/O, audio I/O, a still digital camera, and
other peripherals. We developed software
that uses object-oriented programming
environments, including Supercard, Most large, complex systems-engi-

I E E E S O F T W A R E

Hypercard, and Smalltalk. We designed,
developed, and applied various CASE
tools KO deal with requirements that are
imprecise, ambiguous, or conflicting.

The environment supports the pri-
mary activities of requirements classifica-
tion, indexing, and clustering for analysis;
validation; test-plan generation; quality
assurance; and traceability of system-level
requirements throughout the life cycle.

Figure 1 shows the environment’s ar-
chitecture, which supports multiuser,
multidesigner dialogue that includes the
traditional textual and graphcal informa-
tion sources, plus nonstandard sources
like audio, video, and animation. Figure 2
shows the information flow w i h it.

The environment’s essential compo-
nents are the CASE tools we designed:
The COSP object manager; the Lexscan
lexical scanner and analyzer; the Knowl-
edge-Based Requirements System knowl-
edge-based confict-resolution tool; and
the Costtool cost-estimation tool.

COSR The COSP object manager cap-
ture~, organizes, Jynthesizes, and pesentr in-
f~rmation.~ The capture function involves
all elicitation processes, but emphasizes
interactive user-designer groups. You can
use the environment to capture informa-

Figure l . Architecture fw the requirements-eng-
nemng environment. COSP lets the user “ a g e
olyects in the system. The environment includes three
CASE tools: the Lexscan lexical scanner and an-
alyzer; the Knowledge-Bused Requirements System
conflict-resolution tool; and the Carttool cost-estlma-
tlon tool.

8 1

I

I
Elicitation (ASE took Rotdypimg took Full-mati video
User/designer interactions texxon Animation Animation
Spatial/temporal KBRS Rapid prototyping Graphics
distribution of participants Casttool Text
Multimedia information sources Color
Computer-supported cooperative work

~- _ _ ~ - -~ ~ _ _ _ _

Figure 2. A simplrfed dugram of the infmation flow in our environment Once requirements statements
are analyzed and as many flaws have been corrected (m noted f m correctma htv) as pomble, rapid prototyping
begans These protoiypes are then presented to the users and developers in whatever f m they desire

Menu bar

Create and modify objects
Version control
Browse, present, annotate objects 4

Video
Audio

Graohics
l i l I

Multimedia objects
MacDrnn

Excel
Word

SuperCord
Superpaint
Hypercard

Other

Requirements engineering I
Reguirements-engineering

information s s e m

I Regional mobility system I
Mobility-resource

information svstem

I Howitzer Improvement Program I
System-level

requirements knowledge base
Application objects

Figure 3. The object-management system manages all the infmmtion in the envimment. In the o4ect
manager, you create and modi3 objects, create and maintain version control, browse o b j k s , present objects
dynamically, and annotate them. The object dutabase contains all objects, applications, and domain-specifc
knowledge andduta.

control
arthitecture

Information/
m/

I
I

manager

tools
manager manager manager

General 1 ”,:;: Domain- Domain- 1
analysis specific 1 tools 1 bases I tools analysis knowledge databases

~ - _ _
~~

~ d ~ E o m p u t e r - n r p p a e d , v a t t v e - w ~ e n v r r o n m t as managed throughbhckboard-control
architecture and includes NO major subsystem, one to contrdmeehngprocessesand toolsandanother to control
mnj5rmation and methodr.

tion &om groups that are spatially and
temporally distributed and from all types
of media, through associative dynamic
h k s that relate any object set with any
other object set. Our latest work has fo-
cused on expanding this capture compo-
nent to support collaborative work, as we
detail later.

The organize function encourages dy-
namic associative links with objects that
support a particular requirements func-
tion. The synthesize function lets you pro-
totype requirements at any time, and the
present function supports many exhibi-
tion formats that you can tailor to users
and designers.

All information in the environment is
converted to objects and managed by an
object-management system, shown in
Figure 3 . In the figure, the object manager
contains the facilitator’s window, template
screens for producing additional objects,
and a menu bar for navigation. With the
manager, you can create and modify ob-
jects, create and maintain version control,
browse objects in any order, present ob-
jects dynamically, and annotate them.

The object database contains all multi-
media objects, vario‘us applications, and
domain-specific knowledge bases and
databases (such as the requirements-engi-
neering mformation system, a mobility-
resource-information system, and a sys-
tem-level requirements knowledge base).

Lexun. This tool analyzes the syntax of
natural-language statements.’ It automat-
ically classifies requirements by applying
indexing and clustering techniques. Its
major objective is to aggregate a set of N
requirements into a set ofMrequirements
clusters such that M is significantly less
than N.

Lexscan uses a two-tiered clusteringal-
gorithm to discriminate among a set of M
requirements statements and group them
according to their similarities. The two-
tiered clustering algorithm provides the
information necessary to successfully dif-
ferentiate between similar and dissimilar
requirements and cluster similar require-
ments. It appears to be much more flexible
than other indexing schemes, such as those
based on facets and predefined taxonomies.

t

!:

i

f

b

82 M A Y 1 9 9 2

KBRS. Once requirements are classified,
the Knowledge-Based Requirements Sys-
tem analyzes them to determine conflicts,
incompleteness, inconsistencies, and im-
precision withm and across requirements
clusters.’

KBRS is a knowledge-based CASE
tool designed to examine the use of impre-
cise and ambiguous words, detect conflicts
among quality-memcs terms, and present
these problems to the user for clarification
and resolution. Once these problems are
clarified or resolved, the requirements en-
gineer can tag each statement for trace-
ability and assign memc primitives with
the help of another CASE tool. The engi-
neer also assigns test tools and develops a
test plan to validate requirements state-
ments using these memcs primitives.

Costtod. This effort-estimation tool
uses the measure of a development group’s
average productivity modified by such in-
fluences as the introduction of a new
CASE tool, the group’s experience level,
and their familiaritywith the project.6 De-
veloped for object-oriented design, Cost-
tool uses classes and methods counts as
input.

The general form of Costtool’s effort-
estimation equation is

AA- = [relative effort for the part of the
project not affected by XI

x [portion of the project not affected by
+ [relative effort for the reapplicable part

o f 4
x [portion of the project involvingXthat

can be reapplied to other projects]
+ [relative effort for the project-specific

part of AI
x [portion of the project involving Xthat is

project-specific]

Obied library. The output of these analy-
ses is a set of validated requirements state-
ments. The engineer places these state-
ments into a library. Because our
environment uses classification and clus-
tering algorithms, it can describe require-
ments specifications and store them ac-
cording to function and keyword so they
can be retrieved by those keys. Thus, our
environment supports the reuse of re-
quirements specifications.

Prototyping. Once the requirements

statements have been analyzed and as
many flaws as possible have been cor-
rected (or noted for correction later), rapid
prototyping of the system developed to
date begins. Prototyping tools include
various structured design tools, animation
tools, and screen-development tools. These
prototypes are then presented to the users
and developers in whatever form they desire.

COMPUTER-SUPPORTED
COOPERATIVE WORK

An integrated environment designed
for computer-supported cooperative work
must support interactive information-re-
source development, information analysis
and retrieval, and techtuques that support
group decision-making, including conflict
resolution and consensus building.

Figure 4 shows the conceptual archi-
tecture of the computer-sueported, coop-
erative-work environment.’ The system is
managed through a blackboard-control
architecture and includes two major sub-
systems, one to control meeting processes
and tools and another to control informa-
tion and methods.

Figure 5 shows the meeting manager,

which supports the meeting facilitator and
general meeting conduct. Through the
meeting manager, the facilitator com-
mands several configurations to control
the presentation, including control of the
network configuration, public screen,
agenda, and evaluation method. The
meeting manager also contains tools to
help capture a meeting’s context.

The other parts of the meeting-man-
ager subsystem keep records so subse-
quent users can understand how decisions
were reached and what the meeting’s dy-
namics were. For example, if the meeting
was billed as a decision-makmg meeting to
be conducted in a rational-actor mode,
but tumed out to be an information meet-
ing with an organizational perspective,
this would be recorded. Later, you could
analyze the meeting’s outcome to deter-
mine if the group’s will was recognized or
compromised or if the change in perspec-
tive affected the outcome.

Figure 6 shows the decision-meeting
manager, which is a component of the
meeting-manager subsystem. In this com-
ponent, we track the type of meeting, the
decision strate used and the users’ in-
quiry system. P I This information is re-

Facilitator
tools

monoger

Cdlettive-inquir y tools

llkerdve evakion tods
Documentation took

I E E E S O F T W A R E 83

t

Decision-
meeting
manager

i-----f
Meeting-

manoger

~ Traditional
Minority rule

I
Decision-
strategy
manager

Optimizing
Garbage tan

Inquiry-
system

manager

~ ~ - _ _ _ _ _ _ _ - ~ ~~- ~ ~ ~ _ _ _ _ _ _ _ _ _ _ I
~

Figure 6. The decmn-metwag manager tracks the type ofmeetmg, the &mwn strategy used, and the usen’
inquiry ystem.

~

and-methods

Domain-specific

tools I I
-Softwore and

Expert- Howitzer Improvement
oilten Program

A m b and dewy

Softwore ad
systtm eaghehg

KBRS
Lexxan
C 0 “ l
Prototyping took
OOA 8 OOD

Others

x..,
...

A
Domain specific

databases

-TrmpwtOtion
Regional mobility
information system

rysternr eqheeting
Softwareengineering
information system

Software and

Figure 7. The in&-nuA”and-methodr manager provider general and domuin-SpeCijic analysis took. It
currently incl& domain-sperifc twlr $r transpurtatian ystm and system requirements. The current
domuin-specific knowledge base is the US Army’s Howitzer Improvement Program; the domuin-spec@
databases are requirements engineering and regional mobility.

turned to the meeting process and tools
manager.

Figure 7 shows the information-and-
methods manager. This subsystem pro-
vides several general analysis tools, includ-
ing multiattribute utility, and
domain-specific analysis tools. Currently,
it includes tools for two domains (a s -
portation systems and system require-
ments); it can be configured to include
other domain-analysis tools as needed.
For example, when the computer-sup-

ported cooperative-work environment is
used to help generate system require-
ments, the information-and-methods
manager can access Lexscan, KBRS, and
Costtool to help the user understand the
domain problem and generate a correct,
unambiguous requirements specification.

In Figure 7, the current domain-spe-
cific knowledge base is the US Army’s
Howitzer Improvement Program; the do-
main-specific databases are requirements
engineering and regional mobility.

Expimmts. We’ve experimented with
the computer-supported cooperative
work environment with five decision-
making groups, each consisting of four to
nine participants, for a total of 32 partici-
pants.’

Three groups comprised a total of 19
PhD students and three faculty members.
Each group met for three hours to gener-
ate a prioritized list of research objectives
for requirements-engineering research
for the next two to five years at George
Mason University.

The fourth group comprised six senior
executives who met for three hours to de-
velop the requirements for a study on the
future of nuclear power in the United
States. T h group set its own agenda -it
was not assigned a decision problem, as
the other groups were.

T h e fifth group comprised four
master’s students who met for two hours
to generate a prioritized list of solutions to
the campus parking problem, similar to
the problem detailed by C.E Gettys and
colleagues?

Erduatkn To collect data on the effec-
tiveness of the decisich-support environ-
ment, we videotaped the meetings and had
the participants complete postsession
questionnaires.

The questionnaire asked participants
to indicate their agreement with a series of
statements using a Likert scale, in whch 1
means “strongly disagree” and 5 means
“strongly agree.”The statements were de-
signed to assess the decision-making pro-
cess, satisfaction with previous meeting
experiences, satisfaction with the current
meeting experience, and satisfaction with
and appropriateness of the computer-
aided tools used. All 32 Participants com-
pleted the questionnaire.

The first section of the questionnaire,
modified &om an earlier experiment,” in-
cluded 12 statements about the value of
computer-aided decision-mahg in help-
ing the group generate ideas and achieve a
goal, the participants’ commitment to and
confidence in the decision reached, and
their satisfaction with the process and the
outcome. In answering this section, 56 to
90 percent of the participants rated the

8 4 M A Y 1 9 9 2

f

b

decision-support environment favorably
- indicating “agree” or “strongly agree”
to statements llke “The computer-aided
decision-making process helps the group
achieve its goals.”

The statements in the next section had
the participants evaluate the specific com-
puter-aided tools used. In response to
these four statements, 81 to 97 percent of
the participants rated the tools favorably
- indicating “agree” or “strongly agree”
to the statement that the specific tool was
of value.

The statements in the next section
dealt with the value of meetings in helping
participants understand the problem, un-
derstand why decisions are made, what the
decisions are, and whether meetings let
them express their concerns. This section
had three sets of statements in whch par-
ticipants were asked to rate their experi-
ence in previous meetings (five state-
ments) and in the current meeting (five
statements) and how the previous and cur-
rent meetings compared (four state-
ments). In response to these statements, 63
to 91 percent of participants rated the
computer-aided environment favorably,
while 35 to 58 percent rated previous
meetings favorably.

The small number of participants in
this initial evaluation limits the interpreta-
tion of the findings, but these results do
indicate that decision-makers find the de-
cision-making process and the computer-
aided tools used in this environment both
helpful and satisfymg.

UT environment can accommodate 0 very large amounts of highly com-
plex data from a variety of media sources.
We have included video, audio, text, and
graphics into a single workstation and
have provided for the capture, organiza-
tion, synthesis, and presentation of tlus
varied material. Our system takes advan-
tage of a model-based management sys-
tem to run simulation and analpcal mod-
els and to combine results for
presentation.

Sessions with groups workmg on very
different requirements problems show
that the decision-support environment is a
powerful adjunct to the facilitator in build-

ig a consensus. The fact that each mem-
ier of a group can deal with the same in-
xmation and has equal ability to have the
iformation organized, reorganized, syn-
hesized, and resynthesized on demand fa-
ilitates consensus building.

Clearly, the decision-support envi-
onment is neither a substitute for
iuman facilitators and decision-makers,
tor any better than the quality and
pantity ofrelevant information it is fed.
3owever, our experience with it indi-
ates that it can enhance and extend

the basic tools a facilitator uses to guide a
group to a consensus.

Our tests on the computer-supported
cooperative work environment have led us
to believe that computers can help im-
prove decision-making and help meeting
facilitators build a consensus. In the near
future, we plan to develop more robust
requirements-engineering scenarios and
test the computer-supported cooperative
work environment more extensively to
determine its efficacy in assisting software
developers. +

ACKNOWLEDGMENTS
The research and development of this environment was sponsored in part by a grant from theVirginia

Center for Innovative Technology.

REFERENCES
1. AS. Shumskas, “Software - TQM, T&E, OSD, and You,” Prm. NatYSymp 7QMfm &$wan, Nat’l Inst.

2. B.W. Boehm, “Improving Software Productivity,” Compntw, Sept. 1987, pp. 43-57.
3. PH. Aiken, A Hpennedia Workstatimfbr Requiremen& Enginem’ng, doctoral dissertation, George Mason

University, Fairfax, Va., 1989.
4. J.D. Palmer, Y. Liang, and L. Wang, “Classification as an Approach to Requirements Analysis,”Advumes in

Classtjicatum Research and Application: Pmc. 1st ASIS SIG/CR CIamfinrtion Research Wvrhhep, SM. Hum-
phrey and B.H. Kwasnik, eds., Leamed Information, Medford, N.J., 1990.

5. D. Samson, AutomatedAr~mnce fvr S0frWai-e Reqniremeiitr D$%im, doctoral dissertation, George Mason
University, Faidax, Va., 1988.

6. S.L. Pfleeger, An Investigation ofcost and Prcdutbily f m Object-Oriented Deuelopment, doctoral dissertation,
George Mason University, Fair& Va., 1989.

7. N.A. Fields, An Evolutionq Gaup Deism Mcdelfm C m p m Supported Coopeatbe Wwk, doctoral disser-
tation, GorgeMason University, Fairfax Va., 1991.

8. C. Churchman, The Design oflnqniljng Systems: BmicCmq&ofSystemsand Organzmtim, Basic Books,
New York, 197 1.

9. C.F. Gett).s et al., “An Evaluation ofHuman Act Generation Performance,” Organizational Behmiurand
Human Decision Pmcesses,Feb. 1987,pp. 23-51.

10. A.R. Dennis et al., “Bringinghtomated Support to Large Groups: The Burr-Brown Experience,” Z+-
matzm& Management,Mar. 1990,pp. 111-121.

for Software Qualityand Productivity, Washington, DC, 1991.

James D. Paher is the BDM International professor of informahon technology a t
George Mason Umversity His research mterests are software enpeenng, group-dea-
son support systems, mulnmedia systems, and reqwements engmeenng. He has wnt-
ten three books and more than 75 papers.

Palmer received a BS and an MS m elecmcal engmeenng 60m the Umversity of
Cahfomia at Berkeley and a PhD in elecmcal enpeenng from the Umversity of O b -
h o w . He is a fellow of the JEEE and its Systems, Man, and Cybemencs Societyand the
IEEE Computer Society

N. Ann Fields is a research assistant professor of systems engineenng in the School of
Informanon Technology and Engneenng at George Mason University. Her research in-
terests are goup-deasion-support systems, mulnmedia systems, and reqwrements en@-
neenng.

Fields received a BS in mathemancs from the Umversity ofMami, an MS u1 opera-
tlons resear~h and stansncs from the Umversity of SouthernMmissippi, and a PhD m
infomanon technology from George Mason Umvenity

neenng, S ~ o o l Of h fo r”0n Technology and Enpeenng, George Mason Umversity,
Farfax, VA 22030-4444, Internet jpdmer@gmuvax.edu.

Address qUeShOnS about dus arncle to Palmer at the Center for Softwm Systems En@-

I E E E S O F T W A R E 8 5

mailto:jpdmer@gmuvax.edu

