FEATURE

Studies show that

the greatest leverage to
improve quality lies

in supporting the
collection of correct,
unambiguous
requirements. Such

an environment

must support
collaborative work.

JAMES D. PALMER and N. ANN FIELDS
George Mason University

AN INTEGRATED
ENVIRONMENT FOR
REQUIREMENTS
ENGINEERING

To improve quality, software develop-
ers need comprehensive techniques
that use systematic, integrated, consistent,
and enterprise-wide approaches. Produc-
tivity, quality, and sound project manage-
ment are functions of how well an inte-
grated support environment encourages
the best use of people, policies, processes,
and plans.

If we are to deliver high-quality soft-
ware that meets the customers’ needs, we
must apply integrated support for devel-
opment at the point of greatest leverage.
Recent studies indicate that the greatest
leverage points to influence the produc-
tion of quality software are coincident with

the phases in which we expend the fewest
resources.!

These studies show that five percent of
the total cost of a major system is expended
on design and development, yet 70 per-
cent of the ability to influence quality
comes from this meager amount. In terms
of effort, requirements analysis consumes
merely five percent, butaffords 50 percent
of the leverage to influence improved
quality. In terms of preproduction costs,
system definidon absorbs five percent, yet
again provides 50 percent of the leverage
to influence quality.

In other words, it takes 100 times more
effort to correct errors in requirements

80

07407458 /92 /0500,0080,/$03.00 © IEEE

MAY 1892

discovered at the time of coding than it
does to correct the same errors if they are
discovered during requirements engi-
neering.?

Developers have long given lip service
to the development of high-quality re-
quirements, yet this area is rarely a focus of
research. We believe the value added in
producing high-quality (correct, testable,
and unambiguous) requirements is suffi-
ciently great to warrant concentration in
this area.

OUR ENVIRONMENT

We have developed an integrated envi-
ronment for requirements engineering
that supports participatory development
activities. Our environment helps ensure
quality by supporting and encouraging
group participation and interaction.

Our computer-supported cooperative-
work environment supports the develop-
mentand analysis of system- and software-
level requirements for large, complex
applicadons. It encompasses and coordi-
nates all aspects of requirements develop-
ment, from conceptual inspiration,
through planning, to specific project details.

Case studies of groups using this envi-
ronment show it can support require-
ments engineering for groups of users de-
termining system-level requirements for
large, complex systems. It can also support
the interactive and iterative activides that
take place between users and require-
ments-engineering teams, including

¢ requirements elicitation,

¢ classification,

¢ analysis,

¢ traceability,

¢ validation, and

¢ design
which can lead to test-plan generaton. Its
open architecture means you can integrate
commercial CASE tools as appropriate,
and, although it was designed to support
requirements development, there’s no
reason you can’t extend it to other phases
of the development life cycle.

SUPPORTING GROUPS

Most large, complex systems-engi-

neering projects are inherently group ef-
forts undertaken by developers, managers,
and users who represent development and
application from all perspectives.

Requirements engineering is the elici-
tadon, analysis, classification, and design
of systems and software requirements. It
incorporates many functions, methods, and
approaches applied by users and designers.

In an evolutionary life cycle, require-
ments engineering is a major, continuous
activity whose most important function is
to specify a system that will meet the users’
perceived needs. We have found itis desir-
able and necessary to involve users in re-
quirements elicitation and validaton to
ensure that their view of the system is rep-
resented correctly.

Our environment has two capabilites
that are key to the elicitation of correct,
complete, and unambiguous information:

¢ it can help you obtain useful infor-
mation from individuals or groups and

¢ the information it captures can be
represented in appropriate media formats,

To help the requirements engineer ob-
tain useful information from users, we've
incorporated small-group interaction
techniques in the environment and devel-
oped tools to help support group interac-
don. To let engineers represent the cap-
tured information in appropriate formats,
our multimedia environment supports the
capture and manipulation of information
as text, graphics, audio, and video.

Our multimedia-based environment
uses rapid prototyping and takes into ac-
count the content, not just the form, of re-
quirements. It provides for the presenta-
don of concepts and prototypes that lead
to formal specifications. Its CASE tools let
users manage problems like imprecise,
ambiguous, and incomplete require-
ments.

ARCHITECTURE

Our environment runs on an Apple
Macintosh FX with 8M bytes of RAM,
160 Mbytes of disk storage, analog video
1/O, audio I/O, a sl digital camera, and
other peripherals. We developed software
that uses object-oriented programming
environments, including SuperCard,

HyperCard, and Smalltalk. We designed,
developed, and applied various CASE
tools to deal with requirements that are
imprecise, ambiguous, or conflicting.

The environment supports the pri-
mary activities of requirements classifica-
tion, indexing, and clustering for analysis;
validation; test-plan generation; quality
assurance; and traceability of system-level
requirements throughout the life cycle.

Figure 1 shows the environment’s ar-
chitecture, which supports multiuser,
multidesigner dialogue that includes the
traditional textual and graphical informa-
tion sources, plus nonstandard sources
like audio, video, and animation. Figure 2
shows the information flow within it.

‘The environment’s essential compo-
nents are the CASE tools we designed:
The COSP object manager; the Lexscan
lexical scanner and analyzer; the Knowl-
edge-Based Requirements System knowl-
edge-based conflict-resolution tool; and
the Costtool cost-estimation tool.

COSP. The COSP object manager ap-
tures, ovganizes, synthesizes, and presents in-
formation.’ The capture function involves
all elicitation processes, but emphasizes
interactive user-designer groups. You can
use the environment to capture informa-

cosp
KBRS \ Costoal

Library of requirements abiects
(Library of reuse components)

Lexscan ‘

Future links to existing CASE fools

Figure 1. Architecture for the requirements-engi-
neering environment. COSP lets the user manage
objects in the system. The environment includes three
CASE tools: the Lexscan lexical scanner and an-
alyzer; the Knowledge-Based Requirements System
conflict-resolution tool; and the Costtool cost-estima-
tion tool.

IEEE SOFTWARE

81

Systems Reguirements Requirements Requirements Regquirements
concept development analysis profotyping presentation
Captere Organize Synthesize Present

* Hlcitation o (ASE tools o Profotyping took @ Full-motion video

© User/designer interactions ® Lexscan © Animation © Animation

* Spatial/temporal * KBRS © Rapid profatyping @ Graphics
distribution of participants o (ostool o Text

* Myltimedia information sources o (olor

o Computer-supported cooperative work

Figure 2. A simplified diagram of the information flow in our environment. Once requirMﬁ statements
are analyzed and as many flaws have been corrected (or noted for correction later) as possible, rapid prototyping
begins. These prototypes are then presented to the users and developers in whatever form they desire.

Facilitator's window
Template screens

Object manager

Menu bar

© (reate and modify objects
o Version control
© Browse, present, annotate objects f

Video # . e
Autio Object databose I Requm.zmems engm?ermg | H I'1
Text Requirements-engineering ¥
Graphics information system 2 :
Multimedia objects r e
MocDraw I Regional mobility system] (]
E’“‘J Mobility-resource : :,
Su:Ie:r(ur y information system s
SuperPaint l Howitzer Improvement Program |
HyperCard System-level
Other requirements knowledge base | .
Application objects
Figure 3. The object- g system ges all the information in the environment. In the object

manager, you create and modify objects, create and maintain version control, browse objects, present objects
dynamically, and annotate them. The object database contains all objects, applications, and domain-specific
knowledge and data.

Blackboard
control
architecture

| Ve
‘ Megting /) N \ Informetion/
i process/1ools methods
manager manager
7 4 ~
/ \ . e AN
V.4 N\ ys \ !
Facilitator Meeting- Meeting- General Ds:em:flz 2::‘:;[: Domain-
1ools perspective purpose analysis analysis | knowledge specific
manager manager manager tools tooks hases databoses

architecture and includes two major subsystems, one to control meeting processes and tools and another to control
information and methods.

tion from groups that are spatially and
temporally distributed and from all types
of media, through associative dynamic
links that relate any object set with any
other object set. Our latest work has fo-
cused on expanding this capture compo-
nent to support collaborative work, as we
detail later.

The organize function encourages dy-
namic associative links with objects that
support a particular requirements func-
tion. The synthesize function lets you pro-
totype requirements at any time, and the
present function supports many exhibi-
tion formats that you can tailor to users
and designers.

All information in the environment is
converted to objects and managed by an
object-management system, shown in
Figure 3. In the figure, the object manager
contains the facilitator’s window, template
screens for producing additional objects,
and a menu bar for navigation. With the
manager, you can create and modify ob-
jects, create and maintain version control,
browse objects in any order, present ob-
jects dynamically, and annotate them.

"The object database contains all muld-
media objects, variotis applications, and
domain-specific knowledge bases and
databases (such as the requirements-engi-
neering information system, a mobility-
resource-information system, and a sys-
tem-level requirements knowledge base).

Lexscon. This tool analyzes the syntax of
natural-language statements.* It automat-
ically classifies requirements by applying
indexing and clustering techniques. Its
major objective is to aggregate a set of N
requirements into a set of M requirements
clusters such that M is significantly less
than N.

Lexscan uses a two-tiered clustering al-
gorithm to discriminate among a set of M
requirements statements and group them
according to their similarides. The two-
tered clustering algorithm provides the
information necessary to successfully dif-
ferentiate between similar and dissimilar
requirements and cluster similar require-
ments. It appears to be much more flexible
than other indexing schemes, such as those
based on facets and predefined taxonomies.

82

MAY 1982

KBRS. Once requirements are classified,
the Knowledge-Based Requirements Sys-
tem analyzes them to determine conflicts,
incompleteness, inconsistencies, and im-
precision within and across requirements
clusters.’

KBRS is a knowledge-based CASE
tool designed to examine the use of impre-
cise and ambiguous words, detect conflicts
among quality-metrics terms, and present
these problems to the user for clarification
and resolution. Once these problems are
clarified or resolved, the requirements en-
gineer can tag each statement for trace-
ability and assign metric primitives with
the help of another CASE tool. The engi-
neer also assigns test tools and develops a
test plan to validate requirements state-
ments using these metrics primitives.

Costtool. 'This effort-estimation tool
uses the measure of a development group’s
average productivity modified by such in-
fluences as the introduction of a new
CASE tool, the group’s experience level,
and their familiarity with the project.® De-
veloped for object-oriented design, Cost-
tool uses classes and methods counts as
input.

The general form of Costtool’s effort-

estimation equaton is
Ay = [relative effort for the part of the
project not affected by X]

X [portion of the project not affected by X]

+ [relative effort for the reapplicable part
of X]

x [portion of the project involving X that
can be reapplied to other projects}

+ [reladive effort for the project-specific
part of X]

X [portion of the project involving X that is
project-specific]

Objedt library. The output of these analy-
ses is a set of validated requirements state-
ments. The engineer places these state-
ments into a library. Because our
environment uses classification and clus-
tering algorithms, it can describe require-

ments specifications and store them ac- |

cording to function and keyword so they
can be retrieved by those keys. Thus, our

environment supports the reuse of re-

statements have been analyzed and as
many flaws as possible have been cor-
rected (or noted for correction later), rapid
prototyping of the system developed to
date begins. Prototyping tools include
various structured design tools, animation
tools, and screen-development tools. These
prototypes are then presented to the users
and developers in whatever form they desire.

COMPUTER-SUPPORTED
COOPERATIVE WORK

An integrated environment designed
for computer-supported cooperative work

i must support interactive information-re-

source development, information analysis
and retrieval, and techniques that support
group decision-making, including conflict
resolution and consensus building.

Figure 4 shows the conceptual archi-
tecture of the computer-supported, coop-
erative-work environment.” The system is
managed through a blackboard-control
architecture and includes two major sub-
systems, one to control meeting processes
and tools and another to control informa-
ton and methods.

Figure 5 shows the meeting manager,

Facilitator Meeting-
tools perspective

manager manager
Agenda tools Rational aclor
Collective-inquiry fools Organizational
Voting tools Bureaucratic
Alternative evaluation tools Societal
Documentation fools Legal

Meefing
process/tools
manager

which supports the meeting facilitator and
general meeting conduct. Through the
meeting manager, the facilitator com-
mands several configuratons to control
the presentation, including control of the
network configuration, public screen,
agenda, and evaluation method. The
meeting manager also contains tools to
help capture a meeting’s context.

The other parts of the meeting-man-
ager subsystem keep records so subse-
quent users can understand how decisions
were reached and what the meeting’s dy-
namics were. For example, if the meeting
was billed as a decision-making meeting to
be conducted in a rational-actor mode,
but turned out to be an information meet-
ing with an organizatonal perspective,
this would be recorded. Later, you could
analyze the meeting’s outcome to deter-
mine if the group’s will was recognized or
compromised or if the change in perspec-
tive affected the outcome.

Figure 6 shows the decision-meeting
manager, which is a component of the
meeting-manager subsystem. In this com-
ponent, we track the type of meeting, the
decision strateégy used, and the users’ in-
quiry system.® This information is re-

Meefing-

purpose

manager

Working-meefing Decision-meeting
manager manager

Decision preparation L Decision-moking
Information
Couuthoring

Figure S. The meeting-manager subsystem supports meetings. The facilitator’s tools are designed to control
the presentation, network configuration, public screen, agenda, and evaluation method and help capture a
meeting’s context. The perspective manager and purpose manager recovd information about decisions and bow
they were reached so that later users can understand the meeting’s dynasmics.

quirements specifications.

Prototyping. Once the requirements

IEEE SOFTWARE 83

e

Meeting-

type
manager

\

: i
(Slrudure) QPro(ess) ((omem) Optimizing

Consensus rule [(onsensus -building - Multimedia
Majority rule - Traditional - Traditional
- Minority rule

A=

Decision-
meeting
manager

T

Deision- Inquiry-
strategy system
manager manager
Satisfying {» Lockean
i~ Leibnitzion
- Gorbage con Kantian
t Hegelion
- Singerian

Figure 6. The deci:im—meetiné manager tracks the type of meeting, the decision strategy é;ed, and the users’

inquiry system.
|
Information-
and-methods
/ \ o |
General Domain-specific Domain-specific Domain-specif
analysis analysis knowledge orhain specic
tools tools bases databases
- Multiatrbute utiity I —Softwore and - Transportation
- Slmulumns) systems engineering Regional mobility
~ Linear programming Expon systems Howitzer Improvement information system
~ Spreodsheets Program Software and
thwm ond systems engineering
Software-engineering
An'?;ylsgs 3 information system
Lexscan
Costtool
Profotyping tools
004 & 00D
Others
Figure 7. The information-and-methods provides general and domain-specific analysis tools. It

currently includes domain-specific tools for transportation systems and system requivements. The current
domain-specific knowledge base is the US Army’s Howitzer Improvement Program; the domain-specific
databases are requirements engineering and regional mobility.

turned to the meeting process and tools
manager.

Figure 7 shows the information-and-
methods manager. This subsystem pro-
vides several general analysis tools, includ-
ing multiattribute utility, and
domain-specific analysis tools. Currently,
it includes tools for two domains (trans-
portation systems and system require-
ments); it can be configured to include
other domain-analysis tools as needed.
For example, when the computer-sup-

ported cooperative-work environment is
used to help generate system require-
ments, the information-and-methods
manager can access Lexscan, KBRS, and
Costtool to help the user understand the
domain problem and generate a correct,
unambiguous requirements specification.
In Figure 7, the current domain-spe-
cific knowledge base is the US Army’s
Howitzer Improvement Program; the do-
main-specific databases are requirements
engineering and regional mobility.

Experiments. We've experimented with
the computer-supported cooperative
work environment with five decision-
making groups, each consisting of four to
nine participants, for a total of 32 partici-
pants.”

Three groups comprised a total of 19
PhD students and three faculty members.
Each group met for three hours to gener-
ate a prioritized list of research objectives
for requirements-engineering research
for the next two to five years at George
Mason University.

The fourth group comprised six senior
executives who met for three hours to de-
velop the requirements for a study on the
future of nuclear power in the United
States. This group set its own agenda — it
was not assigned a decision problem, as
the other groups were.

The tifth group comprised four
master’s students who met for two hours
to generate a prioritized list of solutions to
the campus parking problem, similar to
the problem detailed by C.F. Gettys and
colleagues.’

Evaluation. To collect data on the effec-
tiveness of the decision-support environ-
ment, we videotaped the meetings and had
the participants complete postsession
questionnaires.

The questionnaire asked participants
to indicate their agreement with a series of
statements using a Likert scale, in which 1
means “strongly disagree” and 5 means
“strongly agree.” The statements were de-
signed to assess the decision-making pro-
cess, satisfacdon with previous meeting
experiences, satisfaction with the current
meeting experience, and satisfaction with
and appropriateness of the computer-
aided tools used. All 32 participants com-
pleted the questionnaire.

The first section of the questionnaire,
modified from an earlier experiment,™ in-
cluded 12 statements about the value of
computer-aided decision-making in help-
ing the group generate ideas and achieve a
goal, the participants’ commitment to and
confidence in the decision reached, and
their satisfaction with the process and the
outcome. In answering this section, 56 to
90 percent of the participants rated the

84

MAY 18892

decision-support environment favorably
— indicating “agree” or “strongly agree”
to statements like “The computer-aided
decision-making process helps the group
achieve its goals.”

The statements in the next section had
the participants evaluate the specific com-
puter-aided tools used. In response to
these four statements, 81 to 97 percent of
the participants rated the tools favorably
— indicating “agree” or “strongly agree”
to the statement that the specific tool was
of value.

The statements in the next section
dealt with the value of meetings in helping
participants understand the problem, un-
derstand why decisions are made, what the
decisions are, and whether meetings let
them express their concerns. This section
had three sets of statements in which par-
tcipants were asked to rate their experi-
ence in previous meetings (five state-
ments) and in the current meeting (five
statements) and how the previous and cur-
rent meetings compared (four state-
ments). In response to these statements, 63
to 91 percent of participants rated the
computer-aided environment favorably,
while 35 to 58 percent rated previous
meetings favorably.

The small number of participants in
this initial evaluation lirnits the interpreta-
don of the findings, but these results do
indicate that decision-makers find the de-
cision-making process and the computer-
aided tools used in this environment both

helpful and satisfying.

ur environment can accomnmodate

very large amounts of highly com-
plex data from a variety of media sources.
We have included video, audio, text, and
graphics into a single workstation and
have provided for the capture, organiza-
tion, synthesis, and presentation of this
varied material. Our system takes advan-
tage of a model-based management sys-
tem to run simulation and analytical mod-
els and to combine results for
presentation.

Sessions with groups working on very
different requirements problems show
that the decision-support environment is a
powerful adjunct to the facilitator in build-

ing a consensus. The fact that each mem-
ber of a group can deal with the same in-
formation and has equal ability to have the
information organized, reorganized, syn-
thesized, and resynthesized on demand fa-
cilitates consensus building.

Clearly, the decision-support envi-
ronment is neither a substitute for
human facilitators and decision-makers,
nor any better than the quality and
quantity of relevant information it is fed.
However, our experience with it indi-
cates that it can enhance and extend

the basic tools a facilitator uses to guide a
group to a Consensus.

Our tests on the computer-supported
cooperative work environment have led us
to believe that computers can help im-
prove decision-making and help meeting
facilitators build a consensus. In the near
future, we plan to develop more robust
requirements-engineering scenarios and
test the computer-supported cooperative
work environment more extensively to
determine its efficacy in assisting software
developers. L

ACKNOWLEDGMENTS

"The research and development of this environment was sponsored in part by a grant from the Virginia

Center for Innovative Technology.

REFERENCES

1. A.S. Shumskas, “Software - TQM, T&E, OSD, and You,” Proc. Nat'! Symp TQM for Software, Nat']l Inst.
for Software Quality and Productivity, Washington, DC, 1991.

2. B.W. Boehm, “Improving Software Productivity,” Computer, Sept. 1987, pp. 43-57.

3. PH. Aiken, A Hypermedia Workstation for Requivements Engimeering, doctoral dissertation, George Mason

University, Fairfax, Va., 1989.

4. J.D. Palmer, Y. Liang, and L. Wang, “Classification as an Approach to Requirements Analysis,” Advances in
Classification Research and Application: Proc. 1st ASIS SIG/CR Classification Research Workshop, SM. Hum-
phrey and B.H. Kwasnik, eds., Learned Information, Medford, N J., 1990.

5. D. Samson, Automated Assistance for Software Requirements Definition, doctoral dissertation, George Mason

University, Fairfax, Va., 1988.

>

George Mason University, Fairfax, Va., 1989.

~

@

New York, 1971.

9. C.F. Gerttys etal., “An Evaluation of Human Act Generation Performance,” Organizational Behavior and

Human Decision Processes, Feb. 1987, pp. 23-51.

10. AR. Dennis et al., “Bringing Automated Support to Large Groups: The Burr-Brown Experience,” Infor-

mation & Management, Mar. 1990, pp. 111-121.

. S.L. Pfleeger, An Investigation of Cost and Productivity for Object-Oriented Development, doctoral dissertation,

. N.A. Fields, An Evolutionary Group Decision Model for Computer Supported Cooperative Work, doctoral disser-
tation, George Mason University, Fairfax, Va., 1991.
. C. Churchman, The Design of Inquiring Systems: Basic Concepts of Systems and Organizations, Basic Books,

IEEE Computer Society.

neering.

James D. Palmer is the BDM International professor of information technology at
George Mason University. His research interests are software engineering, group-deci-
sion support systems, multimedia systems, and requirements engineering. He has writ-
ten three books and more than 75 papers.

Palmer reccived a BS and an MS in electrical engineering from the University of
California at Berkeley and a PhD in electrical engineering from the University of Okla-
homa. He is a fellow of the IEEE and its Systems, Man, and Cybernetics Society and the

N. Ann Fields is a research assistant professor of systems engineering in the School of
Information Technology and Engineering at George Mason University. Her research in-
terests are group-decision-support systems, multimedia systems, and requirements engi-

Fields received a BS in mathematics from the University of Miami, an MS in opera-
tions research and statistics from the University of Southern Mississippi, and a PhD in
information technology from George Mason University.

Address questions about this article to Palmer at the Center for Software Systems Engi-
neering, School of Information Technology and Engineering, George Mason University,
Fairfax, VA 22030-4444; Internet jpalmer@gmuvax.edu.

IEEE SOFTWARE

85

mailto:jpdmer@gmuvax.edu

