
Requirements engineering with
viewpoints
by Gerald Kotonya and Ian Sommeiville

The requirements engineering process
involves a clear understanding of the
requirements of the intended system. This
includes the services required of the system,
the system users, its environment and
associated constraints. This process involves
the capture, analysis and resolution of many
ideas, perspectives and relationships at
varying levels of detail. Requirements methods
based on global reasoning appear to lack the
expressive framework to adequately articulate
this distributed requirements knowledge
structure. The paper describes the problems
in trying to establish an adequate and stable
set of requirements and proposes a
viewpoint-oriented requirements definition
(VORD) method a s a means of tackling some
of these problems. This method structures the
requirements engineering process using
viewpoints associated with sources of
requirements. The paper describes VORD in
the light of current viewpoint-oriented
requirements approaches and shows how it
improves on them. A simple example of a
bank auto-teller system is used to
demonstrate the method.

1 Introduction

Requirements constitute the earliest phase of the software
development life-cycle. They are statements of need
intended to convey understanding about a desired result,
independent of its actual realisation. The main objective of
the requirements engineering process is to provide a
model of what is needed in a clear, consistent, precise and
unambiguous statement of the problem to be solved. The
model is incomplete unless the environment with which
the component interacts is also modelled. If the environ-
ment is not well understood, it is unlikely that the require-
ments as specified will reflect the actual needs the
component must fulfil. Moreover, as the environment
affects the complexity of the component design, con-

straining the environment can reduce the component
complexity.

Studies by Boehni [l, 21 and others have shown that the
potential impact of poorly formulated requirements is sub-
stantial. Boehm suggested that requirements, specification
and design errors i3re the most numerous in a system,
averaging 64% compared to 36% for coding errors. Most
of these errors are not found during the development
stage but at the testing and delivery stages. The resulting
cost to correct these bugs increases with the time lag in
finding them. A reqluirements error found at the require-
ments stage costs only about one-fifth of what it would if
found at the testinlg stage, and one-fifteenth of what it
would cost after the system is in use.

It has been observed that many of the problems of soft-
ware engineering are difficulties with the requirements spe-
cification. It is natural for the developer to interpret an
ambiguous requirement so that its realisation is as cheap
as possible. Often, however, this is not what the client
wants and it usually results in the system being reworked.

Discrepancies between a delivered system and the
needs it must fulfil elre common and incur very high costs
[4]. In some extreme cases, these discrepancies may make
the entire system useless. An example of these extreme
cases is illustrated by the findings of a survey conducted
by the US Governmlent Accounting Office [5]. This survey
reviewed nine software development projects that had
recently been completed. Although the size of the projects
was quite small (the total sum of the nine contracts was $7
million), the findings showed that 47% of the money was
spent on software that was never used. 29% of the money
was spent on softwive that was never delivered and 19%
resulted in software that was either reworked extensively
after delivery or abandoned after delivery but before the
GAO study was conducted. The GAO report indicated that
of the $317 000 spent on ‘successful’ projects, some addi-
tional modifications were required to be about $198 000 of
it, and only $1 19 000 worth of software could be used as
delivered. This implies that less than 2% of the amount
spent resulted in sorbare that completely met its require-
ments.

Requirements fall into two main categories; functional
and non-functional [6]. Functional requirements capture
the nature of interaction between the component and its
environment. Non-fiinctional requirements constrain the

Software Engineering Journal January 1996 5

solutions that might be considered. An ideal notation for
requirements engineering should cover all aspects of func-
tionality, performance, interface design constraints and the
broader context in which the system will be placed [4, 7, 81.

The failure of software to satisfy the real needs of cus-
tomers is the most visible manifestation of the problems of
establishing an adequate set of requirements for a soft-
ware system. Some of these problems are listed below.

0 In most cases, the requirements engineer is not an
expert in the application domain being addressed. Many
problems in formulating requirements can be traced to
misunderstandings on the parts of the requirements engi-
neers and software engineers, and implicit assumptions by
potential users.
0 There is often inadequate communication between the
requirements engineer and the system’s potential users
due to the differences in their experience and education.
Specifically this means that the analyst and the users do
not have a common understanding of the terms used 191.
e The notion of ‘completeness’ in requirements definition
is problematic. There is no simple analytical procedure for
determining when the users have told the developers
everything that they need to know in order to produce the
system required.
0 Requirements are never stable. Changes in the environ-
ment in which the system has to work may change even
before the system is installed, due to change in its oper-
ational environment.
0 Natural languages are often used to describe system
requirements. Although they aid users in understanding
the system, they have inherent ambiguities that can lead to
misinterpretations.
0 N o one requirements approach or technique can ade-
quately articulate all the needs of a system. More than one
specification language may be needed to represent the
requirements adequately.
o There is a general lack of appropriate tools for s u p
porting the requirements engineering process. There is a
need for tools that can help the requirements engineer to
collect, structure and formulate requirements in an eR-
cient and consistent manner.

We believe that any requirements engineering method
intended to solve these problems must have certain neces-
sary properties. These properties are discussed below.

2 Properties of a requirements engineering
method

Requirements reflect the needs of customers and users of
a system. They should include a justification for the
system, what the system is intended to accomplish, and
what design constraints are to be observed.

A software requirements specification (SRS) is a docu-
ment containing a complete description of what the soft-
ware will do, independent of implementation details. The
process of producing the requirements specification,
including analysis, is denoted requirements definition [101.

The process of eliciting, structuring and formulating
requirements may be guided by a requirements engineer-
ing method. Notations are associated with the method and

provide a means of expressing the requirements. We
believe that the following attributes are a necessary part of
an effective requirements engineering method.

1. The precision of definition of its notation: this indicates
the extent to which requirements may be checked for con-
sistency and correctness using the notation. lmprecise
notations may lead to errors and misunderstanding. It
should be possible to check the requirements both inter-
nally and against a description of the real world.
2. Suitability for agreement with the end-user: this indi-
cates the extent to which the notation is understandable
(as opposed to ‘writeable’) by someone without formal
training. A problem with formally expressed specifications
and their notations is that they cannot be eady under-
stood without special training. One solution to this
problem may be to integrate both informal and formal
descriptions of the system requirements.
3. Assistance with formulating requirements: this can be
viewed in terms of two aspects:

0 how the notation organises the requirements know-
ledge structure for the system; understanding a system,
the services required of it and its environment involves
the capture, analysis and resolution of many ideas, per-
spectives and relationships at varying levels of detail; the
requirements definition process should be guided by a
problem analysis techniques that takes all these view-
points and their requirements into account.
0 how the notation affords the separation of concerns;
ideally, this means that readers of the requirements spe-
cification should need to find only those parts of the
requirements specification that are relevant to their own
area of interest.

4. Definition of the system’s environment: the require-
ments model is incomplete unless the environment is
modelled with which the component interacts. If the
environment is not well understood, it is unlikely that the
requirements as specified will reflect the actual needs
the component must fulfil.
5. The scope for evolution: it must be recognised that
requirements are built gradually over long periods of time
and continue to evolve throughout the component’s life-
cycle. The specification must be tolerant of temporary
incompleteness and adapt to changes in the nature of the
needs being satisfied by the component. In essence, what-
ever the method or approach used to formulate the
requirements, it must be able to accommodate changes
without the need to rework the entire set of requirements.
6. Scope for integration: this can be viewed in terms of
requirements approaches and types of requirements :

0 There is no single requirements approach that can
adequately articulate all the requirements of a system
both from the developers’ and the users’ viewpoints; for
example, a data-flow model does not adequately reflect
control requirements of a system and a formal language
may not be able to express non-functional requirements
properly.
0 non-functional requirements tend to be related to
one or more functional requireqents; expressing func-
tional and non-functional requirements separately
obscures the correspondence between them, whereas

Software Engineering Journal January 1996 6

stating them together may make it difficult to separate
the functional and non-functional considerations.

7. Scope for communication: the requirements process is
a human endeavour, and so the requirements method or
tool must be able to support the need for people to com-
municate their ideas and obtain feedback.
8. Tool support: although notations and methods can
provide much conceptual help with the process of defining
requirements, it is their incorporation into, or support by,
tools which makes the biggest contribution to improving
our ability to manage complexity on large projects. Tools
impose consistency and efficiency on the requirements
process. It lets the requirements engineer collect, structure
and formulate requirements in an efficient and consistent
manner.

It is probably impossible for a single requirements engin-
eering method to completely satisfy all of the above
requirements. Method designers, however, should be
aware of these desirable properties and should make
explicit decisions about which are most important to them.

3 Viewpoints for requirements definition

The notion of viewpoints as a means of organising and
structuring the requirements engineering activity is now
well known. Viewpoints are implicitly present in SADT [l 11
and were first made explicit in the CORE method [12].
Since then there have been various other viewpoint-based
approaches and proposals [13-161. We have summarised
these methods and described our own work on viewpoints
for interactive system design elsewhere [171.

In our initial work, the model adopted for viewpoints was
a service-oriented model, where viewpoints are analogous
to clients in a client-server system. The system delivers ser-
vices to viewpoints, and the viewpoints pass control infor-
mation and associated parameters to the system.
Viewpoints map to classes of end-users of a system or with
other systems interfaced to it.

This approach can be used to support a user-centred
design process [18]. Like user-centred design, it tends to
focus the RE process on the user issues rather than organ-
isational concerns. This leads to incomplete system
requirements. To allow organisational requirements and
concerns to be taken into account, we have extended the
concept of viewpoints to consider other inputs apart from
direct clients of the system. Viewpoints fall into two classes :

1. Direct viewpoints: these correspond directly to clients,
in that they receive services from the system and send
control information and data to the system. Direct view-
points are either system operators/users or other sub-
systems which are interfaced to the system being analysed.
2. Indirect viewpoints: indirect viewpoints have an ‘inter-
est’ in some or all of the services which are delivered by
the system but do not interact directly with it. Indirect view-
points may generate requirements which constrain the ser-
vices delivered to direct viewpoints.

Although the concept of a direct viewpoint is fairly clear,
the notion of indirect viewpoints is necessarily diffuse. Indi-
rect viewpoints vary radically, from engineering viewpoints

(i.e. those concerned with the system design and
implementation) through organisational viewpoints (those
concerned with the system’s influence on the organisation)
to external viewpoints (those concerned with the system’s
influence on the ouitside environment). Therefore, if we
take a simple example of a bank teller system, some indi-
rect viewpoints might. be

0 a security viewpoint concerned with general issues of
transaction security.
0 a systems planning viewpoint concerned with future
delivery of banking services.
0 a trade-union viewpoint concerned with the effects of
the system introduction on staffing levels and bank staff
duties.

Indirect viewpoints are very important as they often have
significant influence within an organisation. If their require-
ments go unrecognised, they often decide that the system
should be abandoned or significantly changed after
delivery. This is particularly true for some classes of safety.
related systems which must be certified by an external
regulator. If certification requirements are not met, the
system will not be allowed to go into service.

Note that the notion of viewpoint which we have
adopted is distinct frjom the ideas used in other methods
of requirements engineering, although it has something in
common with Greenspan’s SOS approach [19] and the
requirements elicitation approach proposed by Leite [141.
In methods such as !WDT and in the practical application
of CORE, viewpoints are seen as sources or sinks of data
flows. In the VOSE method [15], viewpoints are akin to
what we would call engineering viewpoints ; they recognise
that there are many system models used by different engi-
neers involved in system specification and design. These
models often conflict, and the method proposed is geared
to exposing and reconciling these conflicts.

Fig. 1 summarises the notion of viewpoints advanced by
current approaches. !Several features are summarised. Fig.
1 looks at whether some form of classifying mechanism is
adopted in structuring viewpoints; we believe this is impor-
tant as viewpoints may have similar characteristics but dif-
fering requirements, It also summarises viewpoint
orientation adopted lby these methods. Most approaches
have an intuitive notion of a viewpoint and do not extend
the viewpoint analysis beyond the data sinkkource orienta-
tion.

Functional requireiments do not exist in isolation. They
are related to other requirements of the system, for
example, non-functional requirements and control require-
ments. There is a need in a requirements method to
provide a basis for integrating these requirements to
expose this correspondence [17]. Fig. 1 shows that this
kind of broad integration is lacking in most of the
viewpoint-oriented methods. This is particularly true of the
integration of functional and non-functional requirements.
It is also useful if specifications can be expressed in several
different representations. This aids the understanding of
the requirements and promotes communication between
the user and the software developers.

More than one specification may be needed to represent
the requirements adequately. Fig. 1 shows that only VOSE
and Leite’s approach support multiple representations. We

Software Eng i neeri ng Jou rnal January 1996 7

approach

Leite [I41 VOSE [I51 feature SRD SADT 1111 CORE 1121

notation of viewpoint
viewpoint classification
viewpoint orientation
integration of functional and

provision for multiple representations
support for event

support for object-oriented development
support for indirect viewpoints
tool support

non-functional requirements

scenarios/control requirements

intuitive intuitive
no no

data sink/source data sink/source
no no

no
no

no
yes

no no
no no
no Yes

Fig. 1 Summaly of current viewpoint approaches

have already discussed the notion of an indirect viewpoint;
we believe the requirements engineering process is incom-
plete unless these viewpoints are considered. With the
exception of CORE, this notion is largely lacking in the
methods discussed. The CORE notion of an indirect view-
point is synonymous with an external entity that provides
inputs to processes and receives outputs from processes.
However, CORE focuses its main analysis on defining view-
points, which are processes that transform the inputs to
outputs. Each defining viewpoint forms the basis for
further decomposition.

3.1 VORD Viewpoints

Many viewpoint-oriented approaches consider viewpoints
as data sinks or sources, sub-system processes or internal
perspectives. Our proposed notion of viewpoint is based
on the entities whose requirements are responsible for, or
may constrain, the development of the intended system.
These requirements sources comprise the end-users,
stake-holders, systems interfacing with the proposed
system and other entities in the environment of the

weak
no

process
no

no
Yes

no
I i mi ted
limited

defined
no

role/responsibility
no

Yes
not explicit

not explicit
no

Yes

defined

role
no

no
no

no
no

Yes

yes

intended system that may be affected by its operation.
Each requirements source (uiewpoint) has a relationship
with the proposed system based on its needs and inter-
actions with the system. It is therefore important that the
techniques used should adequately capture and organise
not only global, but also the specific requirements of the
different viewpoints into a cohesive knowledge structure
that is both complete and visible. Fig. 2 shows our pro-
posed viewpoint structure. The notion is discussed below.

4 Viewpoints-oriented requirements definition
WORD)

Based on the foregoing notion of viewpoints, we have
developed a method for requirements engineering called
VORD (Viewpoint-Oriented Requirements Definition) which
covers the RE (requirements engineering) process from
initial requirements discovery through to detailed system
modelling. For the purposes of this paper, the latter mod-
elling stages of the method are not important. This dis-

source have I common reauirements I
specific requirements %--- rationale

weighting

characterise ! attributes

event scenarios

interaction

consists.of -1 sewices (functional requirements)

non-functional requirements

may-be
translates-to

specific 7

group -
global

~ may-be constraints
(on viewpoints)

has 1 may-have 1 is-a t- - specialisation
source

(traced to sources of non-functional requirements)

~ m--%m each item in A is related to B through R I
1 m A f l specific item A is related to B through R 1

Fig. 2 VORD viewpoint and information structure

8 Software Engineering Journal January 1996

cussion therefore concentrates on the first three iterative
steps in VORD:

e viewpoint identification and structuring.
e viewpoint documentation.
0 viewpoint requirements analysis and specification.

Fig. 3 shows the VORD process model. The first step,
viewpoint identification and structuring, is concerned with
identifylng relevant viewpoints in the problem domain and
structuring them. The starting point for viewpoint identifica-
tion is with abstract statements organisational needs and
abstract viewpoint classes. This step is described in
Section 4.2.

The second step is concerned with documenting the
viewpoints identifed in the first step. Viewpoint documenta-
tion consists of documenting the viewpoint name, require-
ments, constraints on its requirements and its
requirements source. Viewpoint requirements comprise a
set of required services, control requirements and set of
non-functional requirements. This step is described in
Section 4.3.

The last step is concerned with specifying the functional
and non-functional viewpoint requirements in an appropri-
ate form. The notation used depends on the viewpoint, the
requirements and requirements source associated with the
viewpoint. Appropriate notations range from natural lan-
guage (if the requirements source is concerned with non-
technical requirements), through equations (e.g. if the
requirements source is a physicist), to system models
expressed in formal or structured notations.

Viewpoints and their requirements are collected into a
central repository that serves as input to the requirements
analysis process. The objective of the analysis process is to
establish the correctness of the documentation and to
expose conflicting requirements across all viewpoints.

4.1 ATM example

We use the example of an automated teller machine
(ATM) to illustrate the VORD process model. The ATM
contains an embedded software system to drive the
machine hardware and to communicate with the bank’s
customer database. The system accepts customer
requests and produces cash, account information, pro-
vides for limited message passing and funds transfer. The
ATM is also required to make provisions for major classes
of customers, the home customer and foreign customer.
Home customers are defined as people with accounts in
any of the branches of the bank to which the ATM

document viewpoint
to requirements

requirements inforrnation space

7 1
Tcl = information
0 = process

Fig. 3 VORD process model

belongs. These customers receive all the services provided
by the ATM. Foreign customers are people with accounts
in other banks affiliated to the bank concerned. Apart from
providing services to its users, the ATM is also required to
update the customer account database each time there is
a cash withdrawal or funds transfer.

All the services provided by the ATM are subject to
certain conditions, which can be considered at different
levels. The top level sets out conditions necessary for
accessing the services. These include a valid ATM cash-
card and correct personal identification number (PIN). The
level is concerned with service requests and is subject to
the availability of particular services. Beyond this level, all
services provided by the ATM are subject to specific condi-
tions set out for their provision.

4.2 Viewpoint identification

All structured methods must address the basic difficulty of
identifying the relevisnt problem domain entities for the
system being specified or designed. The majority of
methods provide little or no active guidance for this, and
rely on the method user’s judgement and experience in
identifying these entities. We cannot claim that we have
solved the problem of identifymg relevant problem domain
entities. However, our method provides some help to the
analyst in the critical step of viewpoint identification.

The process of understanding the system under
analysis, its environiment, requirements and constraints
places a lot of reliance on the ‘system authorities’. These
are people or documents with an interest in or specialist
knowledge of the application domain. They include system

VIEWPOINT

I
direct

I
I

operator

Fig. 4 Abstract viewpoint classes

Software En g i neeri ng Journal January 1996 9

end-users, system procurers, system engineers and docu-
mentation of existing system(+

We have generalised these ‘system authorities’ into a set
of viewpoint classes, which can be used as a starting point
for finding viewpoints specific to the problem domain. Fig.
4 shows part of the tree diagram of the abstract viewpoint
classes. Normally, the indirect viewpoints would be decom-
posed to greater depth than shown here. The organisation
viewpoint, for example, would have policy, customer and
training viewpoints as sub-classes, and the environment
viewpoint may have people and others systems in the
environment.

The root of the tree represents the generation notion of
a viewpoint. Information can be inherited by viewpoint sub-
classes, and so global requirements are represented in the
more abstract classes and inherited by sub-classes. In the
direct viewpoint class, the sub-system viewpoint represents
the abstract class of systems within an organisation that
may interact directly with the proposed system. These
include shared databases and other sub-systems. The
operator class represents the abstract class of people who
will interact with the system directly.

Under the indirect viewpoint class, the customer view-
point represents the requirements and policy of the organ-
isation which is purchasing the system, the regulatory
viewpoint represents legal and regulatory requirements
associated with the system, the engineering viewpoint rep-
resents the engineering requirements for the system, and
the environment viewpoint represents environment issues
affecting the system development.

Of course, this class hierarchy is not generic. Each
organisation must establish its own hierarchy of viewpoint
classes based on its needs and the application domain of
the systems which it develops. The information encapsu-
lated in this class hierarchy is an important organisational
resource.

The method of viewpoint identification that we propose
involves a number of stages.

Prune the viewpoint class hierarchy to eliminate view-
point classes that are not relevant for the specific system
being specified. In the ATM example, let us assume that
there is no external certification authority and no environ-
mental effect. We therefore do not need to look for view-
points under these headings.
0 Consider the system stake-holders, i.e. those people
who will be affected by the introduction of the system. If
these stake-holders fall into classes which are not part of
the organisational class hierarchy, add these classes to it.
0 Using a model of the system architecture, identify sub-
system viewpoints. This model may either be derived from
the existing models or may have to be developed as part
of the RE process. In the ATM example, we can identify
one main sub-system, the customer database. We note
that architectural models of systems almost always exist

Fig. 5 ATM viewpoints

because new systems must be integrated with existing
organisational systems.
0 Identify system operators who use the system on a
regular basis, who use the system on an occasional basis
and who request others to use the system for them. All of
these are potential viewpoints. We can identify three
instances of direct viewpoint in this example; the bank
customer (regular), ATM operator (occasional), the bank
manager (occasional).
0 For each indirect viewpoint class that has been identi-
fied, consider the roles of the principal individual who
might be associated with that class. For example, under
the viewpoint class ‘customer’, we might be interested in
the roles of ‘regulations officer’, ‘maintenance manager’,
‘operations manager’ etc. There are oRen viewpoints
associated with these roles. In the ATM example, there are
many possible indirect viewpoints but we confine our
analysis to a security officer, a system developer and a
bank policy viewpoint.

Based on this approach, the viewpoints that might be con-
sidered when developing an ATM specification are shown
in Fig. 5. Home customer and foreign customer viewpoints
are specialisations of the customer viewpoint and as such
inherit its requirements and attributes. Likewise the bank
manager, bank teller and ATM operator viewpoints are
specialisations of bank employee.

4.3 Documenting viewpoint requirements

Viewpoints have an associated set of requirements,
sources and constraints. Viewpoint requirements are made
up of a set of services (functional requirements), a set of
non-functional requirements and control requirements.
Control requirements describe the sequence of events
involved in the interchange of information between a direct
viewpoint and the intended system. Constraints describe
how a viewpoint’s requirements are affected by non-
functional requirements defined by other viewpoints.

We do not have space to look at the detailed require-
ments of each viewpoint here. However, Fig. 6 shows
examples of initial requirements which might apply to an
auto-teller system. The ATM operator and customer data-
base viewpoints are concerned with providing control infor-
mation to the proposed system. The ATM operator is
concerned with stocking the ATM with cash and starting
and stopping i ts operation, The operator needs to be
alerted whenever the cash dispenser is empty. The cus-
tomer database stores the customer account information
which is used by the system to process transactions.

Each viewpoint has an associated template, which is a
collection of structured forms for documenting detailed
viewpoint requirements. This template includes

0 the requirements associated with the viewpoint; these
may be either functional or non-functional requirements.
0 associated sources for viewpoint requirements.
0 a rationale for the proposed requirement
0 constraints on viewpoint requirements and their
sources
0 viewpoint events; viewpoint events describe the inter-
action between the viewpoint and the intended system in
terms of viewpoint events, system responses and excep-
tions.

10 Software Engineering Journal January 1996

viewpoint service non-functional requirements

bank manager transaction reports 1. reports must be provided on a daily basis
2. reports should comprise the account name,

transaction, date and time
3. failure rate of this service should not exceed

1 in 1000 requests
4. system must be operational within 6 months

1. failure rate of this service should not exceed ATM operator operator paging
1 in 10000attempts

home customer 1. cash withdrawal 1. cash withdrawal service should be available

2. cash withdrawal service should have a response
time of no more than 1 minute

3. cash withdrawal service should permit
withdrawal in a choice of denominations

4. balance enquiry should not fail more than
1 in 1000 requests

5. funds transfer service should be reliable
with a maximum failure rate of no more
than 1 in 100000attempts

6. message passing should include request for
cheque books and complaints on
erroneous cash withdrawals

2. balance enquiry 999/1000 requests
3. funds transfer
4. message passing
5. last five transactions

customer database

foreign customer 1. cash withdrawal
2. balance enquiry

security officer 1. all system security risks must be explicitly
identified, analysed and minimised according
to the ALARP principle

2. bank standard encryption algorithms must be used
3. system must print paper record of all transactions

system must be developed using standards defined system developer
in 'System Quality Plan xxx'

Dank policy 1. cash withdrawal service should be available
for 9 out of 10 requests

2. cash withdrawal service should have a
response time of no more than 2 minutes

3. balance enquiry service should not have a
failure rate of more than 1 in 50 requests

Fig. 6 Initial distilled list of viewpoint requirements

Certain items of the template are optional and need not
have entries for all viewpoints. For example, an indirect
viewpoint such as a government regulating body may not
require services from the intended system, but may have
certain non-functional requirements which place con-
straints on the system.

4.3.1 Viewpoint templates: as we do not have space
to develop the complete requirements analysis for ATM
here, we confine our analysis to two viewpoints; the home
customer and foreign customer. For the most part our
example is the cash withdrawal service. We believe this
particular service has sufficient diversity associated with it
in terms of usage and constraints to adequately demon-
strate the usefulness of our approach. Fig. 7 shows the
general viewpoint template for the customer viewpoint.
The customer viewpoint represents the most abstract
description of the home and foreign customer classes.
Attributes and services described at the customer level are
inherited by its two specialisations. The service template

illustrates the provision of the cash withdrawal service to
the home customer viewpoint.

Fig. 8 shows the detailed viewpoint template for the
home customer ancl foreign customer viewpoints in rela-
tion to the cash withdrawal service. Event scenarios and
service specifications are described in Sections 4.3.2. It is
important to note that VORD provides the user with a
framework for formulating very detailed requirements spe
cification, yet maintains a clear separation of concerns. For
example, the cash withdrawal service (Fig. 8) is intended
for both the home and foreign customer viewpoints, but
the source of, rationale for and constraints on the service
differ in each instance. In the case of the home customer,
the source of the requirement is the viewpoint itself,
whereas in the case of the foreign customer, the source of
the requirement is the bank policy viewpoint. Similar con-
straints (e.g. availability) on the service are less stringent for
the foreign customer than for the home customer view-
point. The template also shows that certain constraints can
be specific, whereas others can be group or global con-

Software Engineering Journal January 1996 11

event scenarios
viewpoint: customer

viewpoint template
ref: customer
attributes account no event ref: last five transactions

>

ref:
specification:
user:
constraints:

provider: system-level entities

services: -1 -+
non-functional requirements:--
specialisations:

balance enquiry

home customer
foreign customer

Fig. 7 Structure of ATM customer and service distribution

straints. Group constraints are associated with constraints
affecting similar requirements across several viewpoints.
Global constraints affect all system requirements.

4.3.2 Event scenarios and control: control require-
ments define how a system controls its environment and
hcw the environment controls the system. Control influ-
ences occur not only between the environment and the
system, but also between the elements of the environment
themselves. Control relationships between the proposed
system and its environment are largely due to the need to
conform to, enforce or assist control relationships between
elements of the environment. In essence, control can be
viewed as a distributed layered process through levels of
the environment culminating in the system as the service
provider at the lowest level.

Several models have been proposed for extending
current requirements definition approaches to incorporate
control requirements. These models are typified, in struc-
tured analysis, by the Ward-Mellor [20] and Hartley-Pirbhai
12 11 extensions to the basic structured analysis notation,
and in object-oriented analysis by the Rumbaugh dynamic
model 1221, the Shlaer-Mellor object state model 1231, and
Hare1 statecharts 1241. These models offer insights into the
representation of control requirements.

The provision of a viewpoint service is the culmination of
a series of events arising from the viewpoint layer and filter-
ing through levels of control to entities that are ultimately
responsible for its provision. Fig. 9 illustrates a simple
event trace diagram involving a single viewpoint. Normally
the provision of a service involves the participation of
several viewpoints ; each bringing its control influences to
bear on the service. It is important in documenting a view-
point service to identify other viewpoints affecting or par-
ticipating in the provision of a service. This provides a
means of tracing the impact of later modification in the
requirements of one viewpoint on others.

Viewpoint events are a reflection of the control require-
ments as perceived by the user. System-level events reflect

service specification
service: cash withdrawal

L I

constraints on service
viewpoint: home customer
service: cash withdrawal

response time = 1 min

the realisation of control at the system level. Distinguishing
between the two levels of control provides us with a
mechanism for

addressing control requirements from the user per-
spective.
0 tracing system-level control to viewpoints.
0 exposing conflicting control requirements.
0 capturing the distributed and layered nature of
control.

We have devised a simple mechanism to do the above,
based on event scenarios. An event scenario is defined as
a sequence of events together with exceptions that may
arise during the exchange of information between the view-
point and the system. A normal sequence of events may
have exceptions at various points in the event sequence. At
the system level, exceptions cause a transfer of control to
exception-handlers. As exception-handlers describe alterna-
tive courses of action, they are treated as separate event
scenarios. The top layer of an event scenario is referred to
as the normal scenario; it represents the ‘normal’
sequence of events. Event scenarios can therefore be
thought of as layered, with each subsequent layer compris-
ing events that describe exceptions in the previous layer.

There are three steps in describing viewpoint events:

0 describing isolated viewpoint event scenarios.
0 tracing events and predicates to viewpoints.
0 identifymg viewpoints participating in a service provi-
sion.

Fig. 10 shows the event scenario associated with the
service cash withdrawal of the customer viewpoint. The
normal event scenario is shown in bold transitions. We use
an extended state transition model, based on a model pro-
posed by Rumbaugh [22], to represents the event sce-
narios.

12 Software Engineering Journal Januarv 1996

viewpoint:
service :
source:
weighting:

- event scenarios
described in another section

home customer
cash withdrawal
home customer
essential

r rationale

0 to provide customers with the convenience of
24 hour cash withdrawal from any branch of
the bank.

0 to cut down on the paper work associated with
withdrawals from inside the bank.

1- constraints

1. reference:
type:
definition :
assignment:
source:
weighting:

2. reference:
type :
definition :
assignment:

reliability
availabi I ity
availability 999/1000
specific
home customer
essential
performance
response time
response time < 1 minute
specific

source : home customer
weighting: significant

type : currency selection
definition: ability to select several

assignment: specific
source: home customer
weighting: moderate

type: security risks
definition:
assignment: global
source : security officer
weighting: essential

5 reference: deadline

3 reference: currency

denominations

4 reference: security

security risks must be minimised

type : delivery time
definition :

source : bank manager
weighting: significant

delivery time < 6 months
assignment: group

- specification
described in another section

Fig. 8 Viewpoint template for the home and foreign customers

Each transition has a triggering event, preconditions
which must be satisfied before that transition can take
place and actions which are associated with the transition.

Tracing events to viewpoints is usually straightforward.
In most cases, the events can be traced to the viewpoint
requesting the service. For example, the insert (card) event
in an ATM is associated with initiating all customer ser-
vices, and so is traced to the customer viewpoint. The pre-
conditions can be traced to viewpoints by analysing the
various states of the predicate variable (left-hand side of
Fig. 10) to determine whether any external events are
associated with causing the transitions. If no external
events are involved, the variable is probably an internally
generated value and may be traced to a database or data
dictionary.

viewpoint: foreign customer
service: cash withdrawal
source : bank policy
weighting: essential

I- I
0 to provide customers of banks affiliated to

the home bank with the convenience of
obtaining cash from a wide range of
ATMs.

- constraints -

1 reference: reliability
type : availabi I ity
definition: availability = 900/1000
assignment: specific
source : bank policy
weighting: significant

2 reference: performance
type : response time
definition:
assignment: specific
source : bank policy
weighting: significant

type : security risks
definition: security risks must be

assignment: global
source: security officer
weighting : essential

4 reference: deadline
type :
definition:
assignment: global
source:
weighting: significant

event scenarios -

response time < 2 minute

3 reference: security

minimised

delivery time
delivery time < 6 months

bank manager

r described in another section

specification r described in anothel section

4.3.3 Service specification: the orientation of a
service makes it easy to specify it' using a variety of nota-
tions. We consider this important for two reasons.

0 One of the major problems associated with software
development is a lack of adequate communication

viewpoint layer

Fig. 9 Simple event trace diagrams

Software Engineering Journal January 1996 13

insert(card) enter(pin)
[card=valid]

enter(pin)
attempts 5 allowed

7 r Y-\
enterjamount) verifying

[arnounts<balance]
ireturn-card
/dispense-cash

/ ,
/ I / --_ -__-__--- ‘.

[pin=correct]
idisplay-services cash mode /retain-card

‘- service mode
enter(amount)
[arnount>balance]
/error-message

select(cash)
[ATMFunds=sufficientI

abc(xyz) = event
[abc] = precondition
/action = action

--.---* exception
normal sequence

Fig. 10 Event scenario for cash withdrawaf

between the requirements engineer and the system’s
potential users due to the differences in their experience
and education. The ability to represent the same require-
ment in different notations that are familiar to different
people enhances communication and aids understanding.

No single requirements notation can adequately
articulate all the needs of a system. More than one specifi-
cation language may be needed to represent the require-
ment adequately.

This aspect of a service provides us with a basis for repli-
cating approaches such as VOSE [151, whose notion of a
viewpoint is associated with different representation
schemes.

We illustrate these aspects of a service by specifyng a
simplified version of the ATMs cash withdrawal service
using a formal and informal notation. We use a simplified
form of the formal notation Z and an informal notation to
specify the service. In both cases, we assume that the cus-
tomer has a valid cash card and has entered the correct
personal identification number (PIN).

Fig. 11 shows an informal specification of the cash with-
drawal service.

There are clearly a number of ambiguities in this
description, but it is expressed at a level which could easily
be understood by non-technical staff. A more precise spe-
cification can be developed and linked to this informal
description (as shown in Fig. 7). Of course, we recognise
that the problem with multiple representations of a service
is the demonstration that these representations are equiva-

Customer requests cash withdrawal
if any of the following conditions is true refuse withdrawal:

condition1 : The requested amount exceeds customer balance.
condition2: The funds in ATM are less than request amount

dispense cash
update customer account

else do the following:

endif

Fig. 11
service

Informal specification of simplified cash withdrawal

lent. We have tried to address this problem. Finkelstein et
ai. [15] have identified a comparable problem, the VOSE
approach, and discuss methods of equivalence demons-
tration.

More precisely, the cash withdrawal service can be speci-
fied as a disjunction (OR) of two Z schemas; Per-
rnitWithdrawal and Refusewithdrawal (Fig. 12). This is
based on the following free types :

Fundstatus : : = adequate I inAdequate
Accountstatus : : = overdrawn 1 goodstanding
criticalLevel = 1000
accountNurnber: 0..106

Fundstatus represents the stock of the ATM funds. An
inAdequate status indicates that the ATM funds have
fallen below 1000, represented by criticalleuel. Account-
Status represents the status of the customer account.

For a cash withdrawal to be permitted (Fig. 13), two con-
ditions must be fulfilled.

0 The customer account must be in good standing (i.e.
not overdrawn).
0 The ATM must contain adequate funds.

After a cash withdrawal, the customer account is ulldated.
This is illustrated in the separate specification of Per-
mitwithdrawal and RefuseWithdrawa!.

5 Viewpoint analysis

The purpose of viewpoint analysis is to establish that view-
point requirements are correct and ‘complete’. There are
two stages to this analysis.

I Cashwithdrawal

Permitwithdrawal V Refusewithdrawal

Fig. 12 Specification for cash withdrawal

14 Software Engineering Journal January 1996

I PermitWithdrawal
A Bank
amount ? : N
account? : accountNumber

amount? 4 CustomerFunds(account ?)
customerFunds(account ?)’ =
customerFunds(account 7) - amount ? ,

7 RefuseWithdrawal

amount ? > CustomerFunds(account ?)

Fig. 13 Specification of PermitWithdrawal and RefuseWithdrawal

0 correctness of viewpoint documentation; the view-
point documentation must be checked to ensure that it is
consistent and that there are no omitted sections.
0 conflict analysis; conflicting requirements from differ-
ent viewpoints must be exposed.

Analysis is a complex subject, which we cannot discuss in
detail here. Frankly, we are sceptical about the usefulness
of automated semantic analysis. Conflict analysis in VORD
is performed by the requirements engineer with the help of
the toolset. The VORD toolset has provisions for detecting
a number of conflicting requirements and generating
reports. Our checking facilities are therefore based on
ensuring that information can be presented to the require-
ments engineer in such a way that manual analysis is sim-
plified. We briefly describe the support for analysis below.

5.1 Viewpoint documentation checking

Checking the correctness of a viewpoint documentation
involves verifymg that it has been correctly entered and it is
complete. We have defined a viewpoint as an entity con-
sisting of a set of attributes, requirements, constraints and
even scenarios. Although all viewpoints have attributes that
characterise them, other viewpoint information may be
omitted, depending on whether the viewpoint is a direct or
indirect viewpoint. For example, an indirect viewpoint does
not receive services or provide control information to the
system, but may have non-functional requirements. Direct
viewpoints may receive services, have non-functional
requirements or provide control information to the system.
Both classes of viewpoints may have constraints.

A detailed description of the viewpoint template, its con-
tents and their inter-relationships is provided in Section
3.1. We have built into the VORD toolset a mechanism to
analyse all these aspects of the viewpoint template for
completeness and correctness.

5.2 Conflict analysis

Viewpoints have differing stakes in and interactions with
the intended system and have requirements that are
closely aligned with these interests. Conflicts may arise
from contradictions among individual viewpoint require-
ments. Some related work in this area includes the work
on domain-independent conflict resolution by EasterBrook
[25] and the work on rule-based software quality engineer-
ing by Hausen [26].

In Section 2, we discussed how non-functional require-
ments tend to conflict and interact with the other system
requirements. This kind of conflict may be quite specific,

as in the following two cases:

0 where the provision of a service across viewpoints is
associated with different constraints of the same general
type; for example, a conflict is reported in the case where
the reliability of a service is specified in terms of its avail-
ability in one viewpoint, and in terms of its probability of
failure on demand (POFOD) in another viewpoint.
0 where the provision of a service across viewpoints is
associated with similar constraints, but differing constraint
values; for example, a conflict is reported in the case
where the reliability of a service, specified in terms of its
availability, has a value of 999/1000 in one viewpoint and
a value of 9001 1000 in another viewpoint.

It may also be the case that a requirement in one view-
point contradicts a requirement in another viewpoint; for
example, the security officer viewpoint requirement that
the system must be maintained regularly conflicts with the
availability requirements for the home customer and bank
manager viewpoints. The home customer requires that the
cash withdrawal service is available for 999/1000 requests,
and the bank manager requires that transaction reports
are provided daily with a failure rate of less than 1 in 1000.

These type of conflicts can be exposed by analysing the
constraints associated with a particular service, for consis-
tency, and by analysing one viewpoint’s requirements
against other viewpoint requirements for contradictions.

In addition to these specific viewpoint requirements are
high-level organisational and other global requirements
against which all requirements must be analysed. At this
level, we are interested in establishing whether specific
viewpoint requirements augment or contradict general
organisational and global requirements.

Viewpoints place varying levels of importance on their
requirements. It is important to characterise these varying
levels of importance in order to sift the essential require-
ments from the non-essential and to resolve conflicts. One
way of characterising requirements is to weigh them in
order of importance. The weighing of non-functional
requirements is especially important as they translate to
constraints on services, which are reusable across view-
points and may therefore have differing constraints placed
on them that may conflict. Another important reason for
characterising constraints is that it provides the designer
with a basis on which to trade-off the less important con-
straints.

VORD incorporates a mechanism for weighting require-
ments that takes into account the viewpoint-requirement
relationship, thereby accommodating differing perceptions
and stakes. This mechanism can be used in conjunction
with the stated rationales to resolve conflicting require-
ments or to suggest improvements. The VORD process

Software Engineering Journal January 1996 15

diagram in Fig. 3 shows that the result from analysis feeds
back into the main requirements process through the pro-
posed changes.

6 VORD toolset

Tools make a significant contribution to the requirements
formulation process [lo]. Their incorporation or support in
methods improves the engineer’s ability to manage the
complexity associated with information collection, structur-
ing, verification, consistency checking and integrity preser-
vation. VORD is based on an extensible toolset whose
framework lends itself to tailoring and component reuse.
We would like to emphasise that the use of tools in VORD
is an integral part of the method and is intended to provide
support from the initial requirements formulation through
to detailed specification.

The underlying philosophy of the VORD toolset is to
afford users scope for creativity and experimentation in
arriving at an expression of requirements, while enforcing
the method. We believe the ability of a tool to accommo-
date potentially conflicting information without unduly
restricting the user is very important. To this end, the
VORD toolset incorporates interactive conflict report gen-
eration at all stages of requirements formulation.

Fig. 14 shows the general architecture of the toolset.
The toolset has eight main components: the viewpoint
editor, requirements space, constraint library, specification
editor, proposed changes log, analysis process, entity iden-
tification process and mapping process. Straddling these
six components are a report generation and method guid-
ance tools.

The viewpoint editor facilitates the creation and structur-
ing of viewpoint information collection. The requirements
space is a central requirements repository; it maintains an
updated record of all requirements, their sources, ration-
ale, constraints, events scenarios, specifications and users.
It serves as a source for reusable services as well as a
reference point for other components of the toolset. The
entity identification process (Fig. 14), for example, uses
the requirements space to derive entities responsible for
the provision of services and the viewpoint editor sees it as
repository for reusable services.

The constraint library is a collection of user-defined non-
functional requirements that can be associated with ser-
vices. It comprises a tool for defining non-functional
requirement templates, a constraint library browser and a
facility for previewing and testing defined constraints. Both
formal and informal constraints can be described using
the tool.

The specification editor facilitates the definition of nota-
tion templates and the specification of services in various
notations. The proposed changes log maintains a list of
proposed changes to the requirements, and the analysis
process tool provides a means of managing the analysis
process.

The mapping process is concerned with mapping
viewpoint-level information to system-level information and
verifjmg that system-level information is consistent with the
viewpoint-level requirements.

7 Limitations of VORD

A possible criticism of the method is that it does not explic-
itly support the analysis of the interaction across and within
the viewpoints. This criticism is based on the fact that view-
point interactions are addressed only in the context of ser-
vices, i.e. a viewpoint is analysed for its role in the provision
of a service. This is a reasonable criticism. We believe this
type of analysis may provide system developers with addi-
tional information that may need to be taken into account
in formulating the system requirements. Consider the
example of direct interaction between the bank customer
and bank manager resulting in the manager authorising
cash withdrawal, even though the customer balance is less
than the minimum prescribed level. It may be that the
system requires this kind of flexibility built into it.

Currently, the model of control requirements adopted by
VORD does not explicitly address control issues associated
with concurrency. However, the method supports a frame-
work that allows the engineer to reason about concurrency
in relation to service provision. As services are explicitly
identified with entities at the system level, it is possible to
argue about possibilities of providing services concurrently,
i.e. if they do not share similar entities.

One aspect of control that is usually ignored in many
requirements methods is the flow of time. In structured
analysis, the belikf is that so long as data flows and data
constraints are fully defined, time flow is not necessary
because it follows as a property of the data flow/constraint
information. This could be true only if you could guarantee
a complete definition of the data flows and corresponding
constraints. In practice, this is very difficult. In VORD we
have not attempted to address the time issue beyond
defining it as a constraint on system services.

VORD has been deliberately restricted to a service-
oriented view of systems. A criticism of the method there-
fore is that it is difficult to apply to those systems which do
not fit neatly into the service-oriented systems (SOS) para-
digm. Service-oriented systems can be viewed as service-

mapping process
I

I \ 1 I
I t I

t
entity

identification
1

report

Fig. 14 VORD toolset architecture

16 Software Engineering Journal January 1996

providing enterprises ; they employ systems composed of
people, computer hardware and software, and other
mechanisms to perform service actions in the customer
environment [191.

We do not, however, consider this to be a serious limi-
tation as we believe that most systems can be regarded as
providing services of some kind to their environment. The
intuitive end-user orientation of a service provides us with
the ability to clearly distinguish between user needs on the
one hand what is required (at system level) to meet those
needs on the other. Secondly, the notion of a service also
finds parallels in real life. Thus, for example, we can talk of
the reliability of a service, the efficiency of a service and the
cost of providing a service, all of which correspond to non-
functional requirements. Thirdly, a service is a reusable
commodity that is provided to many users, all (potentially)
imposing differing constraints on it.

Issues relating to change control and the interface with
existing software tools have not been explicitly addressed
in VORD. The issue of change control is important as it
may take several years to analyse requirements and to
develop a large system and it must be expected that
requirements changes will be identified during that time. It
is therefore important that the inevitability of this is recog
nised and anticipated when producing a requirements
document. A commercial version of VORD would need to
incorporate a mechanism to support change control. It is
important that VORD is able to interface with existing soft-
ware tools, as this would allow inter-operability which would
enhance the process of formulating requirements.

8 Conclusions

The notion of viewpoints proposed in VORD offers several
added advantages over other viewpoint-oriented
approaches to requirements engineering.

0 Most existing viewpoint approaches lack any obvious
framework for distinguishing between various user classes,
types of user-system interaction and specific user require-
ments. Our proposed solution to this problem has been to
address requirements from the user perspective
(viewpoint), thereby creating a framework for distinguishing
between user classes and specific user requirements. The
intuitive end-user orientation of a service provides us with
the ability to clearly distinguish between user needs on the
one hand and what is required (at the system level) to
meet those needs on the other hand.
0 Unlike most viewpoint approaches whose concept of
a viewpoint is largely intuitive, VORD is based on a clearly
defined concept of viewpoints. Existing approaches have
also failed to analyse viewpoints beyond considering them
as data sources, data sinks or sub-system processes.
These approaches focus most on their analysis on what
are essentially internal perspectives of the proposed
system. A VORD viewpoint is clearly defined by its attrib-
utes, services, events and specialisations.

We have demonstrated the importance of incorpor-
ating indirect viewpoints into the requirements engineering
process. Indirect viewpoints are very important because
people associated with them are often very influential in an
organisation and can make decisions on whether the

system goes into service. The notion of indirect viewpoints
is largely lacking in current approaches.
0 The explicit identification of viewpoints with services in
VORD has made it possible to create a framework where
several related aspects can be encapsulated. It is possible,
for example, to encapsulate within a viewpoint its rationale
for a service and various constraints that it imposes on the
service. This is a very useful attribute of VORD, as it
improves the potential reusability of services and promotes
incremental development.
0 A lack of understanding of the terms used in require-
ments formulation, and hence a lack of communication
between requirements engineers and systems users, has
been cited as a major stumbling block to developing suc-
cessful software systems (Section 2.1). A partial solution to
this problem is to construct a framework that supports the
integration of vai,ious formal and informal notations.
Developing such a framework within existing requirement
methods is difficult because they are usually associated
with specific notations and are not based on extensible
frameworks.

In VORD, there is no predefined notation for expressing
service specifications. VORD allows an organisation to
define a libraly of templates, based on different specifi-
cation notations, and to use these in the specification of
services. A template is intended to act as a guideline to the
user by partitioning the specification into logical sub-
sections. The tools allow the user to construct both whole
and modular notation templates.

0 Many methods do not address non-functional require-
ments explicitly, and those that address them have tended
to address them as secondary to the ‘central’ issue of func-
tional requirements. Existing methods lack support for the
broad integration of functional and non-functional require-
ments. There is also a general lack of notations and tools
that are flexible enough to accommodate the great diver-
sity of non-functional requirements. VORD has addressed
the issue of both global and specific non-functional
requirements in relation to the system. Defined services
may be associated with non-functional requirements that
are derived from different viewpoints. Indirect viewpoints
serve as a vehicle for collecting system-level non-functional
requirements, and the viewpoint hierarchy allows these to
be propagated to all services.
0 VORD provides a framework that is amenable to
requirements traceability.

In summary, we believe that VORD is a useful contribution
to the field of requirements engineering. We have demon-
strated that a method can be developed which takes into
account both end-user and organisational considerations.
The service orientation of the method ensures that system
requirements, rather than high-level system specifications
or designs, are derived by applying the method. We have
developed a comprehensive toolset for VORD. Of course,
the method is still being developed to address some of the
problems identified earlier, but we would Yike to mention
that an earlier version of the method was used to specify a
fairly complex transactions-related system with some
notable success. Suggestions arising from this early trial
have been invaluable in the development of the current

Software. Engineering Journal January 1996 17

model. Other user trials are underway, including the devel-
opment of detailed requirements for an autonomous exca-
vator.

9 References

[1] BOEHM, B.: ‘Model and metrics for software management
and engineering’ (IEEE Computer Society Press, 1984), pp.
4-9

[2] BOEHM, B.: ‘Industrial software metrics top 10 list’, IEEE
Soflw., 1987,4, (5), pp. 84-85

[3] SOMMERVILLE, I. : ‘Software engineering’ (Addison Wesley,
1992)

[4] ROMAN, G.C.R.: ’A taxonomy of current issues in require-
ments engineering’, IEEE Computer, 1985, 18, (4), pp.

[5] U.S. Government Accounting Office. Contracting for Com-
puter Software Development: ‘Serious problems require
management attention to avoid wasting additional millions’.
Report FGMSD-80-4, 1979

[6] RZEPKA, W. : ‘Requirements engineering environment: soft-
ware tools for modelling user needs’, I€€€ Computer, 1985,

[7] BORGIDA, A., GREENSPAN, S., and MYLOPOULOS, J.:
‘Knowledge representation as a basis for requirements spe-
cifications’, IEEE Comput., 1985, 18, (4), pp. 71-85

[8] DAVIS, A.M.: ‘Software requirements analysis and specifi-
cation’ (Prentice-Hall International, 1990)

[9] BROWN, A.W., EARL, N.A., and MCDERMID, J.: ’Software
engineering environments : automated support for software
engineering’ (McGraw-Hill, 1992)

[lo] DORFMAN, M., and THAYER, R.H.: ‘Requirements definition
guidelines, and examples on system and software require-
ments engineering’ (IEEE Computer Society Press, 1991)

[1 11 ROSS, D., and SCHOMAN, K.E.: ‘Structured analysis for
requirements definition’, IEEE Trans., 1977, 3, (l), pp. 6-15

[12] MULLERY, G.P.: ‘A method for controlled requirements spe-
cifications’. 4th IEEE Computer Society Int. Conf. on Soft-
ware Engineering, pp. 126-135, Munich, Germany, 1979

[13] FICKAS, S., VAN LAMSWEERDE, A., and DARDENNE,:
‘Goal-directed concept acquisition in requirements elic-
itation. 6th Int. IEEE Computer Society Press Workshop on
Software Specification and Design, Como, Italy, 1991, pp.

[14] LEITE, J.C.P.: ‘Viewpoints analysis: a case study’, ACM
Soflw. Eng. Notes, 1989, 14, (3), pp. 11 1-1 19

[15] FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., and GOE-
DICKE, M.: ‘Viewpoints: a framework for integrating multiple
perspectives in system development’, Int. J . Soflw. Eng.
Knowl. Eng., 1992,2, (lo), pp.31-58

14-2 1

18, (4), pp. 9-12

14-21

[16] KOTONYA, G.: ‘A viewpoint-oriented method for require-
ments definition’. PhD Thesis, Lancaster University, UK,
1994

[17] KOTONYA, G., and SOMMERVILLE, 1.: ‘Framework for inte-
grating functional and non-functional requirements’. IEE Int.
Workshop on Systems Engineering for Real-Time Applica-
tions, Cirencester, UK, 1993, pp. 148-1 53

[18] NORMAN, and DRAPER,: 1986
[191 GREENSPAN, S., and FEBLOWTZ, M. : ‘Requirements

engineering using the SOS paradigm’. RE ’93 IEEE Int.
IEEE Society Press Requirements Syrnp. on Requirements
Engineering, San Diego, California, 1993, pp. 260-263

1201 WARD, P., and MELLOR, S.: ‘Structured development for
real-time systems’ (Prentice-Hall, Englewood Cliffs, New
Jersey, 1985)

[21] HARTLEY, D., and PIRBHAI, I.: ‘Strategies for real-time
systems specifications’ (Dorset House, New York, 1987)

[22] RUMBAUGH, J., BLAHA, M, PREMERYWI, W., EDDY, F.,
and LORENSEN, W. : ‘Object-oriented modelling and
design’ (Prentice-Hall International, 199 1)

[23] SHIAER, S., and MELLOR, S.J.: ‘Object-oriented systems
analysis : modelling the world in data’ (Yourdon Press, Prenti-
ce Hall, Englewood Cliffs, New Jersey, 1988)

[24] HAREL, D., LACHOVER, D., IYAAMAD, A., PNUELI, A.,
POWTI, M, SHERMAN, R., and SHTULTRAURING, A.:
‘STATEMATE: a working environment for development of
complex reactive systems’. Tenth IEEE Int. IEEE Computer
Society Press Conf. on Software Engineering, Washington,

[25] EASTERBROOK, S.M.: ‘Resolving conflicts between domain
descriptions with computer-supported negotiation’, Knowl.
Acquisition, 1991,43, (3), pp. 255-289

[26] HAUSEN, H.L.: ‘A notion of rule-based software quality
engineering’. Syrnp. on Applied Computing, Kansas City,
USA, April 199 1
FINKELSTEIN, A, KRAMER, J., and GOEDICKE, M.: ‘View-
points oriented software specification’. 3rd Int. IEEE Com-
puter Society Workshop on Software Engineering and its
Applications, Toulouse, France, 1990, pp. 337-35 1

DC, 1988, pp. 396-406

0 IEE: 1996.

The paper was first received on 28 February and in revised form
on 10 October 1995.

The authors are with the Department of Computing, Lancaster
University, School of Engineering, Computing and Mathematical
Sciences, Lancaster LA1 4YR, UK.

18 Software Engineering Journal January 1996

