
908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Managing Conflicts in Goal-Driven
Requirements Engineering

Axel van Lamsweerde, Member, IEEE, Robert Darimont, Member, IEEE,
and Emmanuel Letier

Abstract—A wide range of inconsistencies can arise during requirements engineering as goals and requirements are elicited from
multiple stakeholders. Resolving such inconsistencies sooner or later in the process is a necessary condition for successful
development of the software implementing those requirements. The paper first reviews the main types of inconsistency that can
arise during requirements elaboration, defining them in an integrated framework and exploring their interrelationships. It then
concentrates on the specific case of conflicting formulations of goals and requirements among different stakeholder viewpoints or
within a single viewpoint. A frequent, weaker form of conflict called divergence is introduced and studied in depth. Formal techniques
and heuristics are proposed for detecting conflicts and divergences from specifications of goals/ requirements and of domain
properties. Various techniques are then discussed for resolving conflicts and divergences systematically by introduction of new
goals or by transformation of specifications of goals/objects toward conflict-free versions. Numerous examples are given throughout
the paper to illustrate the practical relevance of the concepts and techniques presented. The latter are discussed in the framework of
the KAOS methodology for goal-driven requirements engineering.

Index Terms—Goal-driven requirements engineering, divergent requirements, conflict management, viewpoints, specification
transformation, lightweight formal methods.

——————————�F�——————————

1 INTRODUCTION

EQUIREMENTS engineering (RE) is concerned with the
elicitation of high-level goals to be achieved by the

envisioned system, the refinement of such goals and their
operationalization into specifications of services and con-
straints, and the assignment of responsibilities for the re-
sulting requirements to agents such as humans, devices,
and software.

Goals play a prominent role in the RE process; they drive
the elaboration of requirements to support them [49], [8],
[50]; they provide a completeness criterion for the require-
ments specification—the specification is complete if all stated
goals are met by the specification [55]; they are generally
more stable than the requirements to achieve them [3]; they
provide a rationale for requirements—a requirement exists
because of some underlying goal which provides a base for it
[8], [52]. In short, requirements “implement” goals much the
same way as programs implement design specifications.

The elicitation of goals, their organization into a coherent
structure, and their operationalization into requirements to
be assigned to the various agents is a critical part of re-
quirements engineering. One significant problem require-
ments engineers have to cope with is the management of
various kinds of inconsistency resulting from the acquisi-
tion, specification, and evolution of goals/requirements

from multiple sources [51]. Such inconsistencies may be
desirable, for instance, to allow further elicitation of infor-
mation that would have been missed otherwise [23]. How-
ever, their resolution at some stage or another of the process
is a necessary condition for successful development of the
software implementing the requirements.

Various approaches have been proposed to tackle the in-
consistency problem in requirements engineering.

Robinson has convincingly argued that many inconsisten-
cies originate from conflicting goals; inconsistency manage-
ment should, therefore, proceed at the goal level [46]. Rea-
soning about potential inconsistencies requires techniques
for representing overlapping descriptions and inconsistency
relationships. Beside goal refinement links, binary conflict
links have been introduced in goal structures to capture
situations where the satisfaction [8] or satisficing [46], [39] of
one goal may preclude the satisfaction/satisficing of another.
Mechanisms have also been proposed for recording inde-
pendent descriptions into modular structures called view-
points; such structures are linked by consistency rules and
associated with specific stakeholders involved in the elici-
tation process [13], [42].

Various inconsistency management techniques have
been worked out using such representations. Much work
has been done on the qualitative reasoning side. For example,
the labeling procedure described in [39] can be used to de-
termine the degree to which a goal is satisficed/denied by
lower-level requirements; this is achieved by propagating
such information along positive/negative support links in
the goal graph. Robinson [46] suggests a procedure for
identifying conflicts at requirements level and characteriz-
ing them as differences at goal level; such differences are

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� A. van Lamsweerde and E. Letier are with the Département d’Ingénierie
Informatique, Université Catholique de Louvain, Place Sainte Barbe 2,
B-1348 Louvain-la-Neuve, Belgium. E-mail: {avl, eleteier}@info.ucl.ac.be.

•� R. Darimont is with CEDITI-UCL, Avenue Jean Mermoz 30, B-6041
Charleroi, Belgium. E-mail: rd@cediti.be.

Manuscript received 15 Sept. 1997; revised 13 Mar. 1998.
Recommended for acceptance by C. Ghezzi and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107210.

R

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 909

resolved (e.g., through negotiation [47]) and then down
propagated to the requirements level. In the same vein, [4]
proposes an iterative process model in which:

1)�all stakeholders involved are identified together with
their goals (called win conditions);

2)� conflicts between these goals are captured together
with their associated risks and uncertainties;

3)�goals are reconciled through negotiation to reach a
mutually agreed set of goals, constraints, and alterna-
tives for the next iteration.

Some work has also been done more recently on the for-
mal reasoning side. Spanoudakis and Finkelstein [53] pro-
pose a framework for defining and detecting conceptual
overlapping as a prerequisite to inconsistency. Hunter and
Nuseibeh [23] discuss the benefits of reasoning in spite of
inconsistency and suggest a paraconsistent variant of first-
order logic to support this.

The various inconsistency management techniques
above refer to inconsistencies among goals or requirements.
Other forms of inconsistencies have been explored like de-
viations of viewpoint-based specifications from process-
level rules [42], or deviations of the running system from its
specifications [15]; the latter may result from evolving as-
sumptions [16] or from unanticipated obstacles that ob-
struct overideal goals, requirements or assumptions [45],
[32]. (The term “deviation” is used here for a state transi-
tion leading to inconsistent states [7].)

The current state of the art in inconsistency management
for requirements engineering suffers from several problems.

•� The specific kind of inconsistency being considered is
not always clear. In fact, there is no common agree-
ment on what a conflict between requirements does
really mean. The lack of precise definition is a fre-
quent source of confusion. Moreover, most techniques
consider binary conflicts only, that is, conflicts among
pairs of requirements. As we will see, there may be
conflicts among three requirements, say, that are non-
conflicting pairwise.

•� There is no systematic support for detecting conflicts
among nonoperational specifications of goals or re-
quirements—if one excepts theorem proving tech-
niques for logically inconsistent specifications. Current
conflict management techniques take it for granted that
conflicts have been identified in some way or another.

•� There is a lack of systematic techniques for resolving
inconsistencies through goal/requirement transfor-
mations—one notable exception is [48], which pro-
poses a set of operators for restructuring objects in-
volved in conflicting goals.

The purpose of this paper is to tackle those three prob-
lems in a formal reasoning setting by:

1)�Reviewing various types of inconsistency frequently
encountered in requirements engineering, defining
them in a common framework and studying their re-
lationships;

2)�Proposing formal techniques and heuristics for
identifying n-ary conflicts from specifications of
goals/requirements and from known properties
about the domain; and

3)�Presenting formal techniques and heuristics for con-
flict resolution by specification transformation.

Special emphasis is put on a weak form of conflict which
has received no attention so far in the literature although
frequently encountered in practice. Roughly speaking, a di-
vergence between goals or requirements corresponds to situa-
tions where some particular combination of circumstances
can be found that makes the goals/requirements conflicting
(that is, logically inconsistent). Such a particular combination
of circumstances will be called a boundary condition.

To give an example from a real situation, consider the
electronic reviewing process for a scientific journal, with the
following two security goals:

1)� maintain reviewers’ anonymity;
2)�achieve review integrity.

One can show that these goals are not logically inconsistent.
A boundary condition to make them logically inconsistent
would arise from a French reviewer notably known as be-
ing the only French expert in the area of the paper and who
makes typical French errors of English usage. One way to
resolve the divergence is to prevent this boundary condi-
tion from occurring (e.g., not asking a French reviewer if
she is the only French expert in the domain of the paper);
another way would be to weaken the divergent assertions
(e.g., weakening the integrity requirement to allow cor-
recting typical errors of English usage).

A key principle is to manage conflicts at the goal level so that
more freedom is left to find adequate ways to handle con-
flicts—like, e.g., alternative goal refinements and operationali-
zations which may result in different system proposals.

The integration of conflict management into the RE pro-
cess is detailed in the paper in the context of the KAOS re-
quirements engineering methodology [9], [30], [10], [32],
[33]. KAOS provides a multiparadigm specification lan-
guage and a goal-directed elaboration method. The language
combines semantic nets [5] for the conceptual modeling of
goals, requirements, assumptions, agents, objects, and op-
erations in the system; temporal logic [34], [28] for the
specification of goals, requirements, assumptions, and ob-
jects; and state-based specifications [43] for the specification
of operations. Unlike most specification languages, KAOS
supports a strict separation of requirements from domain
descriptions [24]. The method roughly consists of:

1)� eliciting and refining goals progressively until goals
assignable to individual agents are obtained,

2)� identifying objects and operations progressively from
goals,

3)�deriving requirements on the objects/operations to
meet the goals, and

4)�assigning the requirements and operations to the
agents.

An environment supporting the KAOS methodology is
now available and has been used in various large-scale,
industrial projects [11].

The rest of the paper is organized as follows: Section 2
provides some background material on the KAOS method-
ology that will be used in the sequel. Section 3 reviews vari-
ous kinds of inconsistency that can arise in requirements en-

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

gineering, introduces some notational support for making
different viewpoints explicit, and defines the concepts of
conflict and divergence precisely. Sections 4 and 5 then dis-
cuss techniques for conflict/divergence detection and
resolution, respectively.

2 GOAL-DRIVEN RE WITH KAOS
The KAOS methodology is aimed at supporting the whole
process of requirements elaboration—from the high-level
goals to be achieved to the requirements, objects, and opera-
tions to be assigned to the various agents in the composite
system. (The term “composite system” is used to stress that
the system is not only comprised of the software but also its
environment [14].) Thus, WHY, WHO, and WHEN questions
are addressed, in addition to the usual WHAT questions ad-
dressed by standard specification techniques.

The methodology is comprised of a specification lan-
guage, an elaboration method, and meta-level knowledge
used for local guidance during method enactment. Hereafter,
we introduce some of the features that will be used later in
the paper; see [9], [30], [10] for details.

2.1 The KAOS Language
The specification language provides constructs for captur-
ing various types of concepts that appear during require-
ments elaboration.

2.1.1 The Underlying Ontology
The following types of concepts will be used in the sequel:

•� Object: An object is a thing of interest in the composite
system whose instances may evolve from state to
state. It is, in general, specified in a more specialized
way—as an entity, relationship, or event dependent on
whether the object is an autonomous, subordinate, or
instantaneous object, respectively. Objects are charac-
terized by attributes and invariant assertions. Inheri-
tance is, of course, supported.

•� Operation: An operation is an input-output relation
over objects; operation applications define state transi-
tions. Operations are characterized by pre-, post-, and
trigger conditions. A distinction is made between do-
main pre/postconditions, which capture the elemen-
tary state transitions defined by operation applications
in the domain, and required pre/postconditions, which
capture additional strengthenings to ensure that the
goals are met.

•� Agent: An agent is another kind of object which acts
as processor for some operations. An agent performs
an operation if it is effectively allocated to it; the agent
monitors/controls an object if the states of the object are
observable/controllable by it. Agents can be humans,
devices, programs, etc.

•� Goal: A goal is an objective the composite system
should meet. AND-refinement links relate a goal to a
set of subgoals (called refinement); this means that
satisfying all subgoals in the refinement is a sufficient
condition for satisfying the goal. OR-refinement links
relate a goal to an alternative set of refinements; this
means that satisfying one of the refinements is a suffi-

cient condition for satisfying the goal. The goal re-
finement structure for a given system can be repre-
sented by an AND/OR directed acyclic graph. Goals
concern the objects they refer to.

•� Requisite, requirement, and assumption: A requisite is a
goal that can be formulated in terms of states con-
trollable by some individual agent. Goals must be
eventually AND/OR refined into requisites assignable
to individual agents. Requisites, in turn, are AND/OR
operationalized by operations and objects through
strengthenings of their domain pre/postconditions
and invariants, respectively, and through trigger con-
ditions. Alternative ways of assigning responsible
agents to a requisite are captured through AND/OR
responsibility links; the actual assignment of an agent
to the operations that operationalize the requisite is
captured in the corresponding performance links. A
requirement is a requisite assigned to a software agent;
an assumption is a requisite assigned to an environ-
mental agent. Unlike requirements, assumptions can-
not be enforced in general [15], [32].

•� Scenario: A scenario is a domain-consistent composi-
tion of applications of operations by corresponding
agent instances; domain-consistency means that the
operations are applied in states satisfying their do-
main precondition together with the various domain
invariants attached to the corresponding objects, with
resulting states satisfying their domain postcondition.
The composition modes include sequential, alterna-
tive, and repetitive composition.

2.1.2 Language Constructs
Each construct in the KAOS language has a two-level generic
structure: an outer semantic net layer [5] for declaring a con-
cept, its attributes, and its various links to other concepts; an
inner formal assertion layer for formally defining the concept.
The declaration level is used for conceptual modeling
(through a concrete graphical syntax), requirements trace-
ability (through semantic net navigation), and specification
reuse (through queries) [11]. The assertion level is optional
and used for formal reasoning [9], [10], [32], [33].

The generic structure of a KAOS construct is instantiated
to specific types of links and assertion languages according
to the specific type of the concept being specified. For ex-
ample, consider the following goal specification for a
meeting scheduler system:
Goal Achieve[ParticipantsConstraintsKnown]

Concerns Meeting, Participant, Scheduler
Refines MeetingPlanned
RefinedTo ConstraintsRequested, ConstraintsProvided
InformalDef A meeting scheduler should know the

 constraints of the various participants invited
 to the meeting within some deadline d after
 invitation.

FormalDef " m: Meeting, p: Participant, s: Scheduler
Invited(p, m) Á Scheduling(s, m)
Æ ◊≤d Knows(s, p.Constraints)

The declaration part of this specification introduces a concept
of type “goal,” named ParticipantsConstraintsKnown,
stating a required property that should eventually hold
(“Achieve” verb), referring to objects such as Participant

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 911

or Scheduler, refining the parent goal MeetingPlanned,
refined into subgoals ConstraintsRequested and
ConstraintsProvided, and defined by some informal
statement. (The semantic net layer is represented in textual
form in this paper for reasons of space limitations; the
reader may refer to [11] to see what the alternative graphi-
cal concrete syntax looks like.)

The assertion defining this goal formally is written in a
real-time temporal logic inspired from [28]. In this paper,
we will use the following classical operators for temporal
referencing [34]:

o (in the next state) � (in the previous state)

◊ (some time in the future) � (some time in the past)

o (always in the future) n (always in the past)

: (always in the future unless) U (always in the future until)

Formal assertions are interpreted over historical sequences of
states. Each assertion is in general satisfied by some se-
quences and falsified by some other sequences. The notation

(H, i) |= P

is used to express that assertion P is satisfied by history H at
time position i (i ¶ T), where T denotes a linear temporal
structure assumed to be discrete in this paper for sake of
simplicity. States are global; the state of the composite sys-
tem at some time position i is the aggregation of the local
states of all its objects at that time position. The state of an
individual object instance ob at some time position is de-
fined as a mapping from ob to the set of values of all ob’s
attributes and links at that time position. In the context of
KAOS requirements, an historical sequence of states corre-
sponds to a behavior or scenario.

The semantics of the above temporal operators is then
defined as usual [34], e.g.,

(H, i) |= o P iff (H, next(i)) |= P

(H, i) |= ◊ P iff (H, j) |= P for some j � i

(H, i) |= o P iff (H, j) |= P for all j � i

(H, i) |= P U Q iff there exists a j � i such that (H, j) |= Q

and for every k, i ≤ k < j, (H, k) |= P

(H, i) |= P :�Q iff (H, i) |= P U Q or (H, i) |= o P

Note that o P amounts to P:� false. We will also use the
standard logical connectives Á (and), Â (or), ¬ (not),
� (implies), � (equivalent), Æ (entails), Ã (congruent), with

P ⇒ Q iff o (P � Q)

P ⇔ Q iff o (P � Q)

There is thus an implicit outer o-operator in every entail-
ment.

To handle real requirements, we often need to introduce
real-time restrictions. We therefore introduce bounded ver-
sions of the above temporal operators in the style advo-
cated by [28], such as

◊≤d (some time in the future within deadline d)

o≤d (always in the future up to deadline d)

To define such operators, the temporal structure T is en-
riched with a metric domain D and a temporal distance
function dist: T � T � D, which has all desired properties of
a metrics [28]. A frequent choice is

T: the set of naturals

D: { d : there exists a natural n such that d = n � u},

 where u denotes some chosen time unit

dist(i, j): | j - i | � u

Multiple units can be used (e.g., second, day, week);
they are implicitly converted into some smallest unit.
The o-operator then yields the nearest subsequent time
position according to this smallest unit.

The semantics of the real-time operators is then defined
accordingly, e.g.,

(H, i) |= ◊≤d P iff (H, j) |= P for some j � i with dist(i, j) ≤ d

(H, i) |= o<d P iff (H, j) |= P for all j � i such that dist(i, j) < d

Back to the formal assertion of the goal Participants
ConstraintsKnown above, one may note that the scheduler
s in the current state when Invited(p,m) Á Schedul-
ing(s,m) holds should be the scheduler at the future
time within deadline d when Knows(s,p.Constraints)
will hold; this will be expressed in the formal assertion
capturing another subgoal required to achieve the parent
goal MeetingPlanned, namely, the goal SameScheduler.
The conjunction of the formal assertions of subgoals
SchedulerAppointed, ParticipantsConstraintsKnown,
ConvenientMeetingScheduled, and SameScheduler must
entail the formal assertion of the parent goal Meeting-
Planned they refine altogether. Every formal goal refinement
thus generates a corresponding proof obligation [10].

In the formal assertion of the goal ParticipantsCon-
straintsKnown, the predicate Invited(p,m) means that,
in the current state, an instance of the Invited relation-
ship links variables p and m of sort Participant and
Meeting, respectively. The Invited relationship, Par-
ticipant agent, and Meeting entity are defined in other
sections of the specification, e.g.,
Agent Participant
 CapableOf CommunicateConstraints, ...
 Has Constraints:

 Tuple [ExcludedDates: SetOf[TimeInterval],
 PreferredDates: SetOf[TimeInterval]]

Relationship Invited
 Links Participant {card 0:N}, Meeting {card 1:N}
 InformalDef A person is invited to a meeting iff
 she appears in the list of expected participants

 specified in the meeting initiator’s request.

 DomInvar "p: Participant, m: Meeting, i: Initiator
 Invited(p, m) Ã
 p ¶ Requesting[i,m].ParticipantsList

In the declarations above, Constraints is declared as
an attribute of Participant (this attribute was used in the
formal definition of ParticipantsConstraintsKnown);
ParticipantsList is used as an attribute of the Re-
questing relationship that links initiators and meetings.

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

As mentioned earlier, operations are specified formally by
pre- and postconditions in the state-based style [20], [43], e.g.,
Operation DetermineSchedule
 Input Requesting, Meeting {Arg m};
 Output Meeting {Res m}
 DomPre ¬ Scheduled(m)

 Á ($ i: Initiator) Requesting(i, m)
 DomPost Feasible(m) Æ Scheduled(m)

 Á ¬ Feasible(m) Æ DeadEnd(m)

Note that the invariant defining Invited is not a require-
ment, but a domain description in the sense of [24]; it speci-
fies what being invited to a meeting does precisely mean in
the domain. The pre- and postcondition of the operation
DetermineSchedule above are domain descriptions as
well; they capture corresponding elementary state transi-
tions in the domain, namely, from a state where the meeting
is not scheduled to a state where the meeting is scheduled
under some condition.

The software requirements are found in the terminal goals
assigned to software agents (e.g., the goal Convenient
MeetingScheduled assigned to the Scheduler agent),
and in the additional pre-/postconditions that need to
strengthen the corresponding domain pre- and postcondi-
tion in order to ensure all such goals [9], [30], e.g.,
Operation DetermineSchedule

...

RequiredPost for ConvenientMeetingScheduled:
Scheduled(m) Æ Convenient(m)

2.2 The Elaboration Method
The following steps may be followed to systematically
elaborate KAOS specifications from high-level goals:

•� Goal elaboration: Elaborate the goal AND/OR structure
by defining goals and their refinement/conflict links
until assignable requisites are reached. The process of
identifying goals, defining them precisely, and relat-
ing them through positive/negative contribution
links is, in general, a combination of top-down and
bottom-up subprocesses; offspring goals are identi-
fied by asking HOW questions about goals already
identified, whereas parent goals are identified by
asking WHY questions about goals and operational
requirements already identified. Goals can also be
identified in the first place from interviews and analy-
sis of available documentation to find out problematic
issues with the existing system, objectives that are ex-
plicitly stated about the envisioned one, operational
choices whose rationale has to be elicited, etc. Other
techniques for goal identification may include obstacle
analysis [32], scenario-based elicitation [33], and
analogical reuse of goal structures [36].

•� Object capture: Identify the objects involved in goal
formulations, define their conceptual links, and de-
scribe their domain properties.

•� Operation capture: Identify object state transitions that
are meaningful to the goals. Goal formulations refer
to desired or forbidden states that are reachable by
state transitions; the latter correspond to applications
of operations. The principle is to specify such state
transitions as domain pre- and postconditions of op-

erations thereby identified and to identify agents that
could have those operations among their capabilities.

•� Operationalization: Derive strengthenings on operation
pre-/postconditions and on object invariants in order
to ensure that all requisites are met. Formal derivation
rules are available to support the operationalization
process [9].

•� Responsibility assignment: Identify alternative respon-
sibilities for requisites; make decisions among refine-
ment, operationalization, and responsibility alterna-
tives—with process-level objectives such as: reduce
costs, increase reliability, avoid overloading agents,
resolve conflicts (see below); assign the operations to
agents that can commit to guaranteeing the requisites
in the alternatives selected. The boundary between
the system and its environment is obtained as a result
of this process, and the various requisites become re-
quirements or assumptions.

The steps above are ordered by data dependencies; they
may be running concurrently, with possible backtracking at
every step.

2.3 Using Metalevel Knowledge
At each step of the goal-driven method, domain-
independent knowledge can be used for local guidance and
validation in the elaboration process.

•� A rich taxonomy of goals, objects and operations is
provided together with rules to be observed when
specifying concepts of the corresponding subtype. We
give a few examples of such taxonomies.

–� Goals are classified according to the pattern of
temporal behavior they require:

Achieve: P ⇒ ◊ Q or Cease: P ⇒ ◊ ¬ Q
Maintain: P ⇒ Q : R or Avoid: P ⇒ ¬ Q : R

–� Goals are also classified according to the category
of requirements they will drive with respect to the
agents concerned (e.g., SatisfactionGoals are
functional goals concerned with satisfying agent
requests; InformationGoals are goals concerned
with keeping agents informed about object states;
SecurityGoals are goals concerned with main-
taining secure access to objects by agents; other
categories include SafetyGoals, Accuracy-
Goals, etc.).

Such taxonomies are associated with heuristic rules
that may guide the elaboration process, e.g.,

–� SafetyGoals are AvoidGoals to be refined in
HardRequirements;

–� ConfidentialityGoals are AvoidGoals on
Knows predicates. (Knows is a KAOS built-in
predicate that was already used in the goal Par-
ticipantsConstraintsKnown above and will
still be used further in this paper; for an agent
instance ag and an object instance ob, the
predicate Knows(ag,ob) means that the state of
ob in ag’s local memory coincides with the actual
state of ob.)

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 913

Similar rules will be presented for conflict detection
and resolution in Sections 4.3 and 5.1.6, respectively.

•� Tactics capture heuristics for driving the elaboration
or for selecting among alternatives, e.g.,
–� Refine goals so as to reduce the number of agents

involved in the achievement of each subgoal;
–� Favor goal refinements that introduce fewer con-

flicts (see Section 5.1.5).

Goal verbs such as Achieve/Maintain and categories such
as Satisfaction/Information are language keywords
that allow users to specify more information at the declara-
tion level; for example, the declaration

Achieve[ParticipantsConstraintsKnown]

allows specifiers to state in a lightweight way that the prop-
erty named ParticipantsConstraintsKnown should
eventually hold, without entering into the temporal logic
level. (We avoid the classical safety/liveness terminology
here to avoid confusions with SafetyGoals.)

To conclude this short overview of KAOS, we would like
to draw the reader’s attention on the complementarity be-
tween the outer semiformal layer and the inner formal layer.
At the semantic net level, the user builds her requirements
model in terms of concepts whose meaning is annotated in
InformalDef attributes; the latter are placeholders for the
designation of objects and operations [57] and for the infor-
mal formulation of goals, requirements, assumptions, and
domain descriptions. At the optional formal assertion level,
more advanced users may make such formulations more
precise, fixing problems inherent to informality [38], and
apply various forms of formal reasoning, e.g., for goal re-
finement and exploration of alternatives [10], requirements
derivation from goals [9], obstacle analysis [32], require-
ments/assumptions monitoring [15], or conflict analysis as
shown in this paper. Our experience so far with five indus-
trial projects in which KAOS was used reveals that the
semiformal semantic net layer is easily accessible to indus-
trial users; the formal assertion layer proved effective after
the results of formal analysis by trained users were propa-
gated back to the semiformal semantic net layer.

3 INCONSISTENCIES IN GOAL-DRIVEN
REQUIREMENTS ENGINEERING

This section introduces the scope of inconsistency man-
agement in requirements engineering. Some linguistic sup-
port is then introduced for capturing multiple stakeholder
views. Various types of inconsistency are then defined in
this framework.

3.1 Scope of Inconsistency Management
Fig. 1 introduces the various levels at which requirements-
related inconsistencies can occur.

At the product level, the requirements model is captured
in terms of goals, agents, objects, operations, etc. These are
artifacts elaborated according to the process model defined
at the process level. The latter model is captured in terms of
process-level objectives, actors, artifacts, elaboration op-
erators, etc. (We use a different terminology for the same
abstractions at the product and process levels in order to

avoid confusions between these two levels.) At the instance
level, operation instances are executed on object instances in
the running system according to the requirements specified
at the product level.

Consider a meeting scheduler system to help visualize
those levels. A MeetingOrganizer actor involved as
stakeholder in the requirements engineering process may have
identified a product-level goal like Achieve[Participants
ConstraintsKnown] whose satisfaction requires the coop-
eration of product-level agents such as Participant and
Scheduler; this goal has been produced at the process
level through the RefineGoal operator applied to the
Achieve[MeetingPlanned] artifact to meet the process-
level objective Achieve[GoalsOperationalized].

As will be seen in Section 3.3, inconsistencies can arise
between levels or within the same level.

3.2 Capturing Multiple Views
The various activities at the process level involve multiple
actors—clients, users, domain specialists, requirements en-
gineers, software developers, and so forth. Different actors,
in general, have different concerns, perceptions, knowledge,
skills, and expression means. Requirements completeness
and adequacy requires that all relevant viewpoints be ex-
pressed and eventually integrated in a consistent way. (In
practice, viewpoints may be assigned different weights de-
pending on the actor’s status or system priorities; this as-
pect is not considered further in the paper.) Inconsistency
management thus partly relies on some mechanism for
capturing conflicting assertions from multiple viewpoints.

Fig. 1. The process, product, and instance levels.

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Support for multiple viewpoints has been advocated
since the early days of requirements engineering [49]. Pro-
posals for viewpoint-based acquisition, negotiation, and
cooperative modeling appeared only later [17], [46], [44],
[4], [40]. Two kinds of approaches have emerged. In the
multiparadigm approach, specifications for different view-
points can be written in different notations. Multiparadigm
viewpoints are analyzed in a centralized or distributed way.
Centralized viewpoints are translated into some logic-based
“assembly” language for global analysis; viewpoint combi-
nation then amounts to some form of conjunction [41], [56].
Distributed viewpoints have specific process-level rules
associated with them; checking the process-product con-
sistency is made by evaluating the corresponding rules on
pairs of viewpoints [42]. In the single-paradigm approach,
specifications for different views are written in a single lan-
guage; the same conceptual unit is manipulated from one
view to another under different structures, different foci of
concern, etc. Consistency may then be prescribed explicitly
through inter-view invariants or implicitly through syn-
chronization of operations [25].

Our view construct is introduced to

1)� restrict the visibility of conceptual features to specific
contexts associated with corresponding actors, and

2)�allow product-level inconsistencies to be captured and
recorded for later resolution.

Views here are simpler than [42] in that they contain no
process-level information such as the workplan to be fol-
lowed or the development history; they may also contain
formal specifications; they may be explicitly related to each
other and factored out in case of conceptual overlap [53].

A view is defined as a ternary relationship linking a
process-level actor, a master concept and a facet of it (see
Fig. 2; we use the generic term “concept” here to denote a
product-level artifact such as a goal, an object, an operation,
an agent, etc.). A master concept may thereby be viewed
under different facets by different actors. Note that a single
concept facet can be shared among different actors (see the
cardinality constraints in Fig. 2).

For example, one might introduce the master concept
Entity Meeting
Has Date: Calendar; Location: String

and the two following facets of it:
Entity MeetingToBeScheduled
FacetOf Meeting SeenBy MeetingOrganizer
Has ExcludedDates: SetOf[Calendar]

 RequiredEquipment: SetOf[String]
DomInvar " m: Meeting

m.Date not in m.ExcludedDates

and

Entity MeetingToAttend
FacetOf Meeting SeenBy PotentialAttendant
Has MeetingPriority: {low, medium, high}

Master and facet concepts are characterized by features. A
feature corresponds to an attribute declaration, a link to
other concepts in the semantic net, or a formal assertion.
For example, the MeetingToBeScheduled facet seen by
the MeetingOrganizer actor has features such as the dec-
larations of ExcludedDates and RequiredEquipment and

the corresponding domain invariant on date exclusions.
An actor’s view of a concept is defined by joining the fea-

tures of the master concept and the features of the facet seen
by the actor. For example, the view of the MeetingOrganizer
actor includes the features of the MeetingToBeScheduled
facet plus the declarations of the Date and Location at-
tributes of the master concept. A view thus imports all fea-
tures from the corresponding master and facet concepts; the
master features belong to all views of the concept. A master
concept always has at least one feature, namely, the concept
identifier; this mechanism allows different local names (e.g.,
MeetingToBeScheduled) to be associated with a unique
master name (e.g., Meeting).

Different views of a same concept overlap when their re-
spective facets share a common attribute, link, or predicate
in their formal assertions. For example, the two following
goals in a resource management system are overlapping as
they refer to a common predicate Using:
Goal Achieve[ResourceKeptAsLongAsNeeded]
FacetOf SatisfactoryAvailability SeenBy User
FormalDef "u: User, r: Resource

 Using(u,r) Æ o[Needs(u,r) � Using(u,r)]

Goal Achieve[ResourceEventuallyAvailable]
FacetOf SatisfactoryAvailability SeenBy Staff
FormalDef "u: User, r: Resource

Using(u,r) Æ ◊≤d ¬ Using(u,r)

As we will see in Section 3.3.7, the formal assertions that
make them overlapping are in fact divergent. (In passing,
note the use of implication rather than entailment in the
consequent of the first goal above; replacing the “�” con-
nective by “Æ” would be too strong as this would require
user u, once she has been using a resource, to get it in the
future as soon as she needs it again, see the definition of
these connectives in Section 2.1.2.)

Views thus allow conceptual features to be structured
into specific contexts associated with corresponding actors;
they also allow product-level inconsistencies to be captured
and recorded for later resolution. Views associated with the
same actor can be grouped into collections associated with
the actor to form so-called perspectives.

3.3 Classifying Inconsistencies
A set of descriptions is inconsistent if there is no way to
satisfy those descriptions all together. Depending on what
such descriptions capture, one may identify various kinds
of inconsistency.

Fig. 2. Modeling views.

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 915

3.3.1 Process-Level Deviation
A process-level deviation is a state transition in the RE process
that results in an inconsistency between a process-level rule
of the form

(∀r: Requirement) R(r)

and a specific process state characterized by
¬ R(req)

for some requirement req at the product level. This is a par-
ticular case of the notion of deviation in [7]. For example, as-
signing responsibility for the goal Achieve[Participants
ConstraintsKnown] jointly to the Participant and
Scheduler agent types would result in a violation of the pro-
cess-level rule stating that responsibility must always be as-
signed to single agents (see Section 2.1). Violations of inter-
viewpoint rules in [42] also illustrate this kind of inconsistency.

3.3.2 Instance-Level Deviation
An instance-level deviation is a state transition in the running
system that results in an inconsistency between a product-
level requirement of the form

("x: X) R(x)

and a specific state of the running system characterized by
 ¬ R(a)

for some specific value a in X. Going back to our meeting
scheduler example, the participant instance Jeff failing to
provide his constraints for the Icse99-PC meeting pro-
duces an instance-level deviation resulting in a runtime
inconsistency with the goal ConstraintsProvided. Tech-
niques for detecting and resolving runtime deviations are
discussed in [15].

The above types of inconsistency involve two levels from
Fig. 1. Intralevel inconsistencies correspond to inconsistent
objectives and rules at the process level; inconsistent re-
quirements at the product level; or inconsistent states at the
instance level (like different values for Icse99-PC.Date in
Jeff’s agenda and the scheduler’s memory, respectively).
We now focus on inconsistent goals/requirements at the
product level.

3.3.3 Terminology Clash
A terminology clash occurs when a single real-world concept
is given different syntactic names in the requirements speci-
fication. This type of inconsistency may often be found
among views owned by multiple stakeholders. For exam-
ple, a participant p attending some meeting m might be
formalized as Attends(p,m) in some specification frag-
ment and as Participates(p,m) in some other.

3.3.4 Designation Clash
A designation clash occurs when a single syntactic name in
the requirements specification designates different real-
world concepts. (As in [57], we use the term “designation”
for the notion of interpretation function in logic.) This type
of inconsistency again is typically found among views
owned by multiple stakeholders who interpret a single
name in different ways. For example, a predicate such as
Attends(p,m) might be interpreted as “attending
meeting m until the end” in some view and as “at-

tending part of meeting m only” in some other. A
study of the London Ambulance System report [18] reveals
many inconsistencies of this type.

3.3.5 Structure Clash
A structure clash occurs when a single real-world concept is
given different structures in the requirements specification.
An example of this type of inconsistency within a single
view is analyzed in [38]; Goodenough and Gerhart’s infor-
mal specification of Naur’s text formatting problem refers
to a text as a sequence of characters at one point and as a se-
quence of words (that is, a sequence of sequences of charac-
ters) at another. Back to the declaration of the Participant
agent in Section 2.1.2, a structure clash would occur if the
ExcludedDates subattribute had been declared as SetOf
[TimePoint] in another view instead of SetOf
[TimeInterval].

Resolving structure clashes can be done by application of
restructuring operators [12] or by addition of mapping in-
variants in the style advocated in [25]. The absence of
structure clash is called type correctness in some consis-
tency checking tools [22].

The next types of inconsistency are defined in more
technical terms as they will be studied throughout the rest
of the paper. Let A1, ..., An be assertions, each of them for-
malizing a goal, a requirement or an assumption. Let Dom
denote a set of domain descriptions [24] that captures the
knowledge available about the domain.

3.3.6 Conflict
A conflict between assertions A1, ..., An occurs within a do-
main Dom iff the following conditions hold:

1)� { Dom,�∧1≤ i ≤n�Ai }�|− false� (logical inconsistency)

2)� for every i: { Dom,�∧j≠i�Aj�} |/− �false� (minimality)

Condition 1 states that the assertions A1, ..., An are logically
inconsistent in the domain theory Dom or, equivalently, that
the negation of any of them can be inferred from the other
assertions in this theory; Condition 2 states that removing
any of those assertions no longer results in a logical incon-
sistency in that theory. We are indeed interested in focussing
on minimal situations for conflicts to occur. To give a trivial
example, the three propositional assertions below are con-
flicting, whereas they are not logically inconsistent pairwise:

P Q P Æ ¬ Q

Thus, an n-ary conflict over a set S of n assertions cannot
be “contracted,” that is, it cannot be an m-ary conflict over a
proper subset of S involving m assertions (m < n); this di-
rectly follows from the minimality condition. Likewise, an
n-ary conflict over a set S of assertions cannot be “ex-
tended,” that is, it cannot be a p-ary conflict over a proper
superset S � of S (p > n), for if it was a conflict over S �, it
won’t be a conflict over the subset S of S � by the minimality
condition again. The minimality condition thus implies that
the removal of any assertion from a conflicting set makes
the resulting set no longer conflicting.

It is easy to see that binary conflicts give rise to an irre-
flexive, nontransitive, and symmetrical relation.

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Let us give a simple example of conflicting assertions. In
the context of specifying a device control system, require-
ments that constrain the possible states of the Device
agent are elicited from different stakeholders, each provid-
ing a fragmentary view as follows.

View1: InOperation Æ Running

View2: InOperation Æ Startup

Startup Æ ¬ Running

View3: o InOperation

(For simplicity, the perceived states of the device are for-
malized by atomic propositional formulas.) In the first
view, the InOperation mode is required to be covered by
the Running state. The second view somewhat comple-
ments the first one by introducing the Startup state as an-
other state covering the InOperation mode, disjoint from
the Running state. The third view requires the Device
agent to be always in the InOperation mode. It is easy to
check that the four assertions from these three views are
conflicting; a first derivation using modus ponens once
yields Running, whereas a second derivation using modus
ponens twice yields ¬Running; removing any of those as-
sertions makes it impossible to reach such contradictory
conclusions.

The conflicting viewpoints in [13], in which a property
and its negation can both be derived when putting the
viewpoints together, adhere to the definition above. Vio-
lation of the disjointness property in [22], which requires
that, in a given state, each controlled variable, mode class,
and term in a SCR specification be defined uniquely, may
also be seen as a particular case of this kind of inconsis-
tency; nondisjointness may result in a single output vari-
able/term being prescribed different, incompatible values.
Another particular case is the inconsistency considered in
[21], arising when the guarding condition on more than
one transition in a finite state machine can be satisfied
simultaneously.

It is our experience, however, that a weaker form of con-
flict, not studied before in the literature, occurs highly fre-
quently in practice. We define it now.

3.3.7 Divergence
A divergence between assertions A1, ..., An occurs within a
domain Dom iff there exists a boundary condition B such that
the following conditions hold:

1)� { Dom, B, ∧1≤ i ≤n�Ai }�|– �false� �� (logical inconsistency)

2)� for every i: { Dom, B, ∧j≠i�Aj�}�|/− false (minimality)

3)� there exists a scenario S and time position i such that
(S, i) |= B (feasibility)

The boundary condition captures a particular combina-
tion of circumstances which makes assertions A1, ..., An con-
flicting if conjoined to it (see Conditions 1 and 2).

Condition 3 states that the boundary condition is satis-
fiable through one behavior, at least, that is, there should be
at least one scenario that establishes the boundary condi-
tion. Clearly, it makes no sense to reason about boundary
conditions that cannot occur through some feasible agent
behavior.

Note that a conflict is a particular case of divergence in
which B = true. Also note that the minimality condition
precludes the trivial boundary condition B = false; it stipu-
lates, in particular, that the boundary condition must be
consistent with the domain theory Dom.

The following variant of Condition 1 above will be used
frequently in practice:

{ Dom, B, ∧j≠i Aj } |– ¬ Ai

To give a first, simplified example, consider a resource man-
agement system and the goal SatisfactoryAvailability
that appeared at the end of Section 3.2. In the user’s view,
the goal

"u: User, r: Resource

Using (u, r) Æ o [Needs (u, r) � Using (u, r)]

states that if a user is using a resource then she will con-
tinue to do so as long as she needs it, whereas in the staff’s
view the goal

"u: User, r: Resource

Using (u, r) Æ ◊≤d�¬ Using (u, r)

states that if a user is using a resource then within some
deadline d she will no longer do so.

These two goals are not conflicting. However, they are
divergent because there is an obvious boundary condition,
namely,

◊ ($u’: User, r’: Resource) [Using (u’, r’) Á o≤d Needs (u’, r’)]

The latter is satisfied by some behavior in which, at some
time point, some user is using some resource and needs it
for two weeks at least. This clearly makes the three asser-
tions conflicting altogether. (In Section 4.1, we will see how
such a condition can be derived formally.)

Various subtypes of divergence can be identified accord-
ing to the temporal evolution of the boundary condition B:

occasional divergence: ◊ B

intermittent divergence: o ◊ B

persistent divergence: ◊ (B�U C)

permanent divergence: ◊ o B

perpetual divergence: o B

For example, the divergence on satisfactory availability
above is likely to be intermittent and persistent. In the Lon-
don Ambulance system [18], the divergence between the
goal Achieve[NearestFreeAmbulanceDispatched] in
the patient’s view and the goal Maintain[Ambulance
CloseToStation] in the driver’s view is intermittent and
persistent as well because of the possibility of repeated ac-
cidents occurring far from the station with no other ambu-
lance being available.

Divergences can also be classified according to the category
of the diverging goals. Examples of divergence categories in-
clude ResourceConflict divergences between Satisfaction
goals related to resource requests; ConflictOfInterest di-
vergences between Optimize goals, in which one goal is
concerned with maximizing some quantity whereas others
are concerned with minimizing that quantity. For example,
the goal Maximize[Profit] in a company’s view and the

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 917

goal Minimize[Costs] in the customer’s view result in a
ConflictOfInterest divergence; in the London Ambu-
lance system, a ConflictOfInterest divergence results
from the goal Maximize[NumberOfAmbulances] in a pa-
tient’s view, that refines Maximize[QualityOfService],
and the goal Minimize[CostOfService] in the manage-
ment’s view. As will be shown in Sections 4.3 and 5.1.6,
goal categories may be used for defining heuristics for di-
vergence detection and resolution, respectively.

We conclude this classification of inconsistencies with
two particular cases of divergence within a single view.

3.3.8 Competition
A competition is a particular case of divergence within a sin-
gle goal/requirement; it is characterized by the following
conditions:

1)� The goal assertion takes the form ("x: X) A [x]
2)� { Dom, B, ∧i¶I A [xi]} |– false for some I

3)� { Dom, B, ∧i¶J A [xi]} |/− false for any J ´ I

4)� There exists a scenario S and time position i such that

(S, i) |= B

A competition thus corresponds to the case where different
instantiations A[xi] of the same universally quantified
goal/requirement "x: A [x] are divergent.

For example, there is a binary competition within the
meeting scheduling goal
" m: Meeting, i: Initiator, p: Participant
Requesting(i, m) Á Invited(p, m)
Æ ◊ ($ d: Calendar) [m.Date = d Á Convenient(d, m, p)],

because of a possible boundary condition:
◊ $ m,m’: Meeting, p: Participant, i,i’: Initiator
Requesting(i,m) Á Requesting(i’,m’)
Á Invited(p,m) Á Invited(p,m’)
Á o [($ d: Calendar) Convenient(d,m,p)

Á ($ d’: Calendar) Convenient(d’,m’,p)
Á ¬ ($ d,d’: Calendar)

 Disjoint(d,d’) Á Convenient(d,m,p)
 Á Convenient(d’,m’,p)]

This condition captures a situation of two requested meet-
ings involving a common invited participant for which
convenient dates can be found in isolation but not jointly.

As another example found in the London Ambulance sys-
tem, two instantiations of the goal Achieve[NearestFree
AmbulanceDispatched] are competing because of a
boundary condition of the same ambulance being the near-
est to two simultaneous accidents.

3.3.9 Obstruction
An obstruction is a borderline case of divergence in which
only one assertion is involved; it is defined by taking n = 1 in
the general characterization of divergence:

1)� { Dom, B, A} |–�false

2)� { Dom, B } |/− false

3)� There exists a scenario S and time position i such that

(S, i) |= B

The boundary condition then amounts to an obstacle that
obstructs the goal assertion [45], [32]; the minimality condi-

tion now states that the obstacle must be consistent with the
domain.

For example, the goal Achieve[InformedParticipants
Attendance] formalized by
" m: Meeting, p: Participant
Invited(p,m) Á Informed(p,m) Á Convenient(m.Date,m,p)
Æ ◊ Participates(p,m)

may be obstructed by the obstacle LastMinuteImpediment
formalized by
◊ $ m: Meeting, p: Participant
Invited(p,m) Á Informed(p,m) Á Convenient(m.Date,m,p)
Á o (IsTakingPlace(m) � ¬ Convenient(m.Date,m,p))

This obstacle captures scenarios in which a participant has
been informed of a meeting whose date is convenient to her
at that time position, but no longer at subsequent time po-
sitions where the meeting is taking place.

Divergence analysis and obstacle analysis have different
foci of concern. The former is aimed at coping with multiple
goals that diverge, whereas the latter is aimed at coping with
single goals that are overideal and/or unachievable. Obstacle
identification and resolution provide the basis for defensive
requirements engineering. Although there are generic simi-
larities between some of the detection/resolution techniques,
we will not discuss obstacle analysis any further here; the
interested reader may refer to [32].

3.4 Integrating Conflict Management in the
Requirements Elaboration Process

The integration of conflict management in the goal-driven
process outlined in Section 2.2 is suggested in Fig. 3.

The main difference is the right part of it. During elabora-
tion of the goal graph by elicitation from multiple
stakeholders (asking WHY questions) and by refinement
(asking HOW questions), views are captured and diver-
gences are detected in goal specifications found in different
views or within a single view. The divergences are resolved
when they are identified or later on in the process when op-
erational requisites have been derived from the divergent
goals and responsibility assignment decisions are to be made.
Resolution results in a goal structure updated with new goals
and/or transformed versions of existing ones (see Section
5.1). These goals in turn may refer to new objects/operations
and require specific operationalizations (see Section 5.2).

Some key questions arising here are: When exactly
should divergences be identified? When exactly should an
identified divergence be resolved? A definitive answer to
these important questions is out of the scope of this paper;
we just make a few trade-offs explicit here.

Fig. 3. Conflict management in goal-driven RE.

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Divergences should be identified as early as possible in
the goal elaboration process as they encourage the explora-
tion of alternative OR-paths in the goal graph. However, the
more specific the goals are, the more specific the boundary
condition will be; divergence analysis will be much more
accurate for lower-level, formalizable goals.

As will be seen in Section 5, various operators (in the
sense of Fig. 1) can be followed to resolve divergences.
Which operator to choose may depend on the tolerability of
the divergence and of its consequences, and on the likeli-
hood of occurrence of the boundary condition. When to
apply such an operator for resolution is an open question.
Too early resolution may prevent useful inferences and
derivations from being made [23]; too late resolution may
cause too costly backtracking to high-level goals.

The techniques discussed below for divergence detection
and resolution make no assumptions about where the di-
vergent assertions come from. They can be used for diver-
gence analysis across multiple views or within one single
view. Their presentation will therefore make no explicit use
of the view mechanism presented in Section 3.2, even
though many divergences arise from multiple views.

4 DETECTING DIVERGENCES

Two formal techniques are proposed in this section to de-
tect divergences (with conflicts or competitions as particu-
lar cases). The former derives boundary conditions by
backward chaining; the latter relies on the use of diver-
gence patterns.

4.1 Regressing Negated Assertions
The first technique is directly based on the common variant
of the first condition characterizing divergence:

{ Dom, B, ∧j≠i�Aj } |– ¬Ai

Given some goal assertion Ai, it consists of calculating precon-
ditions for deriving the negation ¬Ai backwards from the other
assertions conjoined with the domain theory. Every precondi-
tion obtained yields a boundary condition. Weakest boundary
conditions may be worth considering as they cover the most
general combinations of circumstances to cause a conflict;
however, they may sometimes be too general to find specific
ways to overcome them (see examples below). This backward
chaining technique amounts to a form of goal regression [54],
which is the counterpart of Dijkstra’s precondition calculus
[20] for declarative representations. A variant of this technique
can be used for obstacle derivation [32].

Let us first illustrate the idea applied to the divergent
goals that appeared in Section 3.3.7, namely,

" u: User, r: Resource

Using (u, r) Æ o [Needs (u, r) � Using (u, r)] (user’s view)

and

"u: User, r: Resource

Using (u, r) Æ ◊≤d ¬ Using (u, r) (staff’s view)

The initialization step consists of taking the negation of
one of these goals. Taking the staff’s view, we get

(NG) ◊ $ u: User, r: Resource

Using (u, r) Á o≤d Using (u, r)

(Remember that there is an implicit outer o-operator in
every entailment; this causes the outer ◊-operator in (NG).)
For this specific user, the assertion in the first view reduces to

(D) o [Needs (u, r) � Using (u, r)]

by universal instantiation and modus ponens. To make sub-
formulas in (NG) and (D) unifiable, we rewrite them into the
following logically equivalent form:

(D’) o Needs (u, r) � o Using (u, r)
(NG’) ◊ $ u: User, r: Resource

Using (u, r) Á o<d o Using (u, r)

(Remember that the o operator yields the nearest subse-
quent time position according to the smallest unit consid-
ered in the specification, see Section 2.1.2.) The subformula
o Using(u,r) in (NG’) now unifies with the consequent in (D’);
regressing (NG’) through (D’) then amounts to replacing in
(NG’) the matching consequent in (D’) by the corresponding
antecedent. We obtain:

◊ $u: User, r: Resource
Using (u, r) Á o<d o Needs (u, r)

that is,
◊ $u: User, r: Resource)

Using (u, r) Á o≤d Needs (u, r)

We have thereby formally derived the boundary condition
given in Section 3.3.7. (Note that no domain property was
used in this case.)

Assuming the goals and the domain descriptions all
take the form of rules A Æ C, the general procedure is as
follows [29].
Initial step: take B := ¬ Ai

Inductive step: let A Æ C be the rule selected,
with C matching some subformula L

 in B;

then m := mgu(L, C);
B := B[L/A.m]

(where mgu(F1,F2) denotes the most general unifier

of F1 and F2, F.m denotes the result of applying the
substitutions from unifier m to F, and F[F1/F2] de-
notes the result of replacing every occurrence of F1

in formula F by F2).

Some aspects are left open in this general procedure.
When several rules are applicable for the next regression,
one should first select goal assertions prior to domain de-
scriptions; since divergence is being sought within the as-
sertion set, one should exploit the information from those
assertions as much as possible. In the initial step, one should
obviously select an assertion ¬ Ai which contains unifiable
subformulas. At every step, the compatibility of the tempo-
ral scopes of the matching subformulas L and C must be
checked; additional inferences and simplifications may be
required to make matching subformulas refer to the same
states [1]. Every iteration in the procedure above produces
potentially finer boundary conditions; it is up to the re-
quirements engineer to decide when to stop, depending on
whether the boundary condition obtained is meaningful

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 919

and precise enough to easily identify a scenario satisfying it
and to see ways of overcoming it for divergence resolution.

In the example above, only one iteration was performed,
through the other goal. The next example illustrates more
iterations and the regression through domain descriptions as
well. We come back to the “French reviewer” example intro-
duced in Section 1, that is, an electronic reviewing process for
a scientific journal with the following two security goals:

1)� reviewers’ anonymity;
2)� review integrity.

(These goals could be found in different stakeholder per-
pectives, or within a single one.) The goals are made precise
as follows:
Goal Maintain[ReviewerAnonymity]
 FormalDef

 " r:Reviewer, p:Paper, a:Author, rep:Report
 Reviews(r, p, rep) Á AuthorOf(a, p)
 Æ o ¬ Knows(a, Reviews[r,p,rep])

Goal Maintain[ReviewIntegrity]
 FormalDef

 " r:Reviewer, p:Paper, a:Author, rep,rep’:Report
 AuthorOf(a,p) Á Gets(a,rep,p,r)
 Æ Reviews(r,p,rep’) Á rep’ = rep

(In the formalization above, Reviews[r,p,rep] desig-
nates a ternary relationship capturing a reviewer r having
produced a referee report rep for paper p; the predicate
Reviews(r,p,rep) expresses that an instance of this rela-
tionship exists in the current state. The predicate
Gets(a,rep,p,r) expresses that author a has the report
rep by reviewer r for his paper p. The goal ReviewerA-
nonymity makes use of the KAOS built-in predicate Knows
defined in Section 2.3.)

Let’s take the goal Maintain[ReviewerAnonymity] for
the initialization step. Its negation, say (NG), yields

◊ $ r:Reviewer, p:Paper, a:Author, rep:Report
Reviews(r,p,rep) Á AuthorOf(a,p)
Á ◊ Knows(a, Reviews[r,p,rep])

Regressing (NG) through the ReviewIntegrity goal,
whose consequent can be simplified to Reviews(r,p,rep)
by term rewriting, yields (NG1):

◊ $ r:Reviewer, p:Paper, a:Author, rep:Report
AuthorOf(a,p) Á Gets(a, rep, p, r)
Á ◊ Knows(a, Reviews[r,p,rep])

Assume now that the domain theory contains the following
sufficient conditions for identifiability of reviewers (the
outer universal quantifiers are left implicit for simplicity):

(D1) Gets(a, rep, p, r) Á Identifiable(r, rep)
 Æ ◊ Knows(a, Reviews[r,p,rep])

(D2) Reviews(r, p, rep) Á SignedBy(rep, r)
 Æ Identifiable(r, rep)

(D3) Reviews(r, p, rep) Á French(r)
 Á ¬ $ r’ ¡ r: [Expert(r’, p) Á French(r’)]

 Æ Identifiable(r, rep)

(In the domain descriptions above, the predicate Identi-
fiable(r,rep) means that the identity of reviewer r can
be determined from the content of report rep; rules (D2)
and (D3) provide explicit sufficient conditions for this. The

predicate SignedBy(rep,r) means that report rep con-
tains the signature of reviewer r; the predicate Ex-
pert(r,p) means that reviewer r is a well-known expert
in the domain of paper p.)

The third conjunct in (NG1) above unifies with the conse-
quent in (D1); the regression yields, after corresponding
substitutions of variables:
◊ $ r:Reviewer, p:Paper, a:Author, rep:Report
AuthorOf(a, p) Á Gets(a, rep, p, r)
Á Identifiable(r, rep)

The last subformula in this formula unifies with the conse-
quent in (D3); the regression yields
(B) ◊ $ r:Reviewer, p:Paper, a:Author, rep:Report

AuthorOf(a, p) Á Gets(a, rep, p, r)
Á Reviews(r, p, rep)
Á French(r) Á ¬ $ r’ ¡ r: Expert(r’, p) Á French(r’)

We have thereby formally derived the boundary
condition promised in Section 1, which makes the di-
vergent goals Maintain[ReviewerAnonymity] and
Maintain[ReviewIntegrity] conflicting. It is satis-
fied by the scenario of a report being produced by a French
reviewer who is the only well-known French expert in the
domain of the paper, and then sent unaltered to the author
(as variable rep is the same in the Reviews and Gets
predicates). We will come back to this example in Section 5
to illustrate divergence resolution strategies.

Exploring the space of potential boundary conditions
that can be derived from the domain theory is achieved by
backtracking on each rule applied to select another applica-
ble one. After having selected rule (D3) in the example
above, one could select rule (D2) to derive another bound-
ary condition:
(B) ◊ $ r:Reviewer, p:Paper, a:Author, rep:Report

AuthorOf(a, p) Á Gets(a, rep, p, r)
Á Reviews(r, p, rep) Á SignedBy(rep, r)

which captures the situation of an author receiving the
same report as the one produced by the reviewer with sig-
nature information found in it.

In practice, the domain theory does not necessarily need
to be very rich at the beginning. The requirements engineer
may incrementally elicit sufficient conditions for subformu-
las that are candidates to replacement in the regression pro-
cess, by interaction with domain experts and clients (e.g.,
“what are sufficient conditions for identifiability of the re-
viewer from the report received?”).

4.2 Using Divergence Patterns
Besides iterative regression through goal specifications and
domain descriptions, one can identify frequent divergence
patterns that can be formally established once and for all
together with their associated boundary conditions. De-
tecting divergence between some given goals is then
achieved by selecting a matching generic pattern and by
instantiating it accordingly. The requirements engineer is
thus relieved of the technical task of doing the formal deri-
vations required in Section 4.1.

This approach follows the spirit of goal refinement pat-
terns [10] or obstacle identification patterns [32]. We give a
few divergence patterns here to illustrate the approach;
more work is needed to reach a rich set of patterns compa-

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

rable to the one available for goal refinement [10]. The con-
flicts between the formulas in the various patterns in Fig. 4
were proved formally using STeP [35].

A first obvious pattern frequently encountered involves
Achieve and Avoid goals (see Fig. 4). It is easy to derive
the predicate ◊ (P ∧ R) in the first pattern of Fig. 4 as a
boundary condition leading to a conflict between the upper
Achieve and Avoid goals conjoined with the upper right
domain description (remember again that there is an im-
plicit outer o-operator in every entailment).

As an example of reusing the Achieve-Avoid diver-
gence pattern in Fig. 4, consider the following two Satis-
faction goals in a resource management system:
Goal Achieve[RequestSatisfied]
FormalDef " u:User, r:Resource

Requesting(u, r) Æ ◊ Using(u, r)

Goal Avoid[UnReliableResourceUsed]
FormalDef " u:User, r:Resource

¬ Reliable(r) Æ o ¬ Using(u, r)

These two goals match the Achieve-Avoid divergence
pattern in Fig. 4 with instantiations P: Requesting(u,r),
Q: Using(u,r), R: ¬Reliable(r), S: Using(u,r); no
domain property is necessary here. Without any formal
derivation one gets the boundary condition

◊ $ u:User, r:Resource
Requesting(u, r) Á ¬ Reliable(r)

To illustrate the use of the Retraction pattern in Fig. 4,
consider a patient monitoring system with the following two
assertions (expressed in propositional terms for simplicity):

(A1) Critical ⇒ ◊ Alarm
(A2) Alarm ⇒ Critical

Pairs of assertions of this form are again rather frequent.
Such assertions do not appear to be divergent at first sight,
although they are. They match the retraction pattern in
Fig. 4 from which one may directly infer a divergence with
boundary condition

 ◊ [Critical ∧ (¬ Alarm U o ¬ Critical)].

(Recall that 8 and : denote the “until” and “unless” op-
erators, respectively.) The potential conflict between (A1)
and (A2) arises from the disappearing of the critical situa-
tion before the alarm is raised. Again this has been obtained
formally without any formal derivation.

Using the last pattern in Fig. 4 for a library system with
the following instantiations,

P: Borrowing (u, bc), u: User, bc: BookCopy, lib: Library

Q: HasPermission (u, bc) ,

R: Member (u, lib) ,

S: DueDate (u, bc) ,

we directly infer a rather subtle potential conflict presented
in [27]; the conflict arises because of a borrower losing library
membership before the due date for returning her bor-
rowed copies.

4.3 Divergence Identification Heuristics
Divergence identification heuristics are provided as rules of
thumb in order to help users identify divergences without
necessarily having to go through formal techniques every
time. Such heuristics are derived from formal patterns of
divergence or from past experience in identifying diver-
gences. Goal classifications, as mentioned in Section 2.3, are
used to define these heuristics. We give a few examples of
them to illustrate the approach.

•� If there is a SatisfactionGoal and a SafetyGoal
concerning a same object, then the possibility of a diver-
gence between those two goals should be considered. For
example, a divergence between the goals Achieve [Ar-
rivalOnTime] and Avoid[TrainOnSameBlock] might
be thereby identified in a train control system.

•� If there is a ConfidentialityGoal and an Informa-
tionGoal concerning a same object, then the possibility
of a divergence between those two goals should be con-
sidered. For example, a divergence between the goals
Achieve[EditorialBoardInformed]

•� and Maintain[ReviewerAnonymity] might be thereby
identified in an electronic journal management system
because of the boundary condition of associate editors
submitting papers. The same rule may lead to the identi-
fication of a divergence between the goals
Achieve[ParticipantsConstraintsKnown]
and Maintain[ParticipantPrivacy] in a meet-
ing scheduler system; between the goals"
Achieve[PatientInformed] and Maintain[Medical
Secret] in a hospital management system; etc.

•� If there are two Optimize goals interfering on a same
object’s attribute, then the possibility of a Conflict
OfInterest divergence between those two goals
should be considered. For example, a divergence be-
tween the goals Maxmize[NumberOfAmbulances] and

Fig. 4. Divergence patterns.

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 921

Minimize[CostOfService] might be thereby identi-
fied in the London Ambulance system.

•� If there are several possible instantiations of the same
SatisfactionGoal goal among multiple agent in-
stances, then the possibility of a Competition diver-
gence should be considered. (We use the notion of com-
petition here as it is defined in Section 3.3.8.) For exam-
ple, a divergence between multiple instantiations of the
goal Achieve[MeetingScheduled] might be thereby
identified in a meeting scheduler system; between mul-
tiple instantiations of the goal:

Achieve[NearestFreeAmbulanceDispatched]

in the London Ambulance system; etc.
•� If there is an Achieve goal with a target condition Q and

an Avoid goal on a condition S with Q overlapping S (that
is, Q implying S), then the two goals are divergent if it is
possible for their respective preconditions P and R to hold
simultaneously (see the first pattern in Fig. 4).

More specific goal subcategories on the same object (like
Confidentiality or Integrity subcategories of Secu-
rityGoals [2]) will result in a more focussed search for
corresponding divergences and boundary conditions.

One may also identify divergences by analogy with di-
vergences in similar systems, using analogical reuse tech-
niques in the spirit of [36].

5 RESOLVING DIVERGENCES

The divergences identified need to be resolved in some way
or another depending on the likelihood of occurrence of
boundary conditions and on the severity of the conflict con-
sequences in such a case. Resolution should take place
sooner or later depending on the potential for eliciting fur-
ther information from divergent goals. The result of the
resolution process will be a transformed goal structure and,
in some cases, transformed object structures (see Section
3.4); the latter transformations may need to be propagated
to the corresponding domain descriptions in Dom (see Sec-
tion 5.2 below).

Various strategies can be followed to resolve diver-
gences. Each of them corresponds to a specific class of reso-
lution operators (see the process level in Fig. 1).

5.1 Assertion Transformation
Under this family, we group all operators which create, de-
lete, or modify goal assertions.

5.1.1 Avoiding Boundary Conditions
Since boundary conditions lead to conflicts, a first strategy
consists of preventing them from occurring. A new goal is
therefore introduced which has the Avoid pattern:

P ⇒ o ¬B,
where B denotes a boundary condition to be inhibited.
AND/OR refinement and divergence analysis may then be
applied to this new goal in turn.

Coming back to our “French reviewer” example, we de-
rived by regression in Section 4.1 the following boundary
condition:
◊ $ r:Reviewer, p:Paper, a:Author, rep:Report
AuthorOf(a, p) Á Gets(a, rep, p, r)
Á Reviews(r, p, rep)
Á French(r) Á ¬ $ r’¡r: Expert(r’, p) Á French(r’)

Deriving an Avoid goal from this assertion will produce a
new goal:

" r:Reviewer, p:Paper, a:Author, rep,rep’:Report
Reviews(r, p, rep) Á AuthorOf(a, p)
Á Gets(a, rep’, p, r)
⇒ (rep’ ¡ rep
 Â [French(r) ⇒ $ r’¡ r: Expert(r’, p) Á French(r’)])

That is, the referee report should be modified/corrected or
there should be at least one other French expert in the do-
main of the paper. The first alternative will require the in-
tegrity goal to be weakened as discussed below.

To take another real-world example, consider the two fol-
lowing goals in a library system, named CopiesEventual-
lyAvailable and CopyKeptAsLongAsNeeded, respectively:

(G1) "m:Member, b:Book
Requests(m, b) Á InLib(b)

 Æ ◊ ($bc:BookCpy)[Copy(bc,b) Á Available(bc)]

(G2) "m:Member, b:Book, bc:BookCopy
Borrowing(m, bc) Á Copy(bc, b)
Æ o [Needs(m, b) � Borrowing(m, bc)]

Given domain properties such as
[($m:Member)Borrowing(m,bc)] Æ ¬ Available(bc),

Requests(m, b) Æ
 ¬ ($bc)Borrowing(m,bc):($bc)Available(bc),

one can show that goals (G1) and (G2) are divergent as the
following boundary condition is derived by regression:

◊ $m:Member, b:Book
Requests(m, b) Á InLib(b)
Á "bc:BookCopy
 [Copy (bc, b) �
 ($m’:Member)(m’¡ m Á Borrowing(m’,bc)
 Á o o Needs(m’,b))]

This boundary condition captures the possibility of a mem-
ber requesting some book registered in the library whose
copies are all borrowed by other members and in the sequel
permanently needed by them.

Resolving the divergence by avoiding this boundary
condition might be achieved by keeping some copies of
every popular book always unborrowable to make them
available for direct use in the library (this strategy is often
implemented in university libraries).

It may turn out, after checking with domain experts, that
the assertion P ⇒ o ¬ B introduced for divergence resolution
is not a goal/requirement but a domain property that was
missing from the domain theory Dom, making it possible to
infer the boundary condition B by regression. In such cases,
the domain theory will be updated instead of the goal
structure. For example, it might be the case in some specific
resource allocation system that no user can possibly need
any resource for more than the two-week limit. The diver-
gence detected in Section 4.1 would then be resolved by
adding this property to the set of domain descriptions.

5.1.2 Goal Restoration
Boundary conditions cannot always be avoided, especially
when they involve agents in the external environment over
which the software has no control. An alternative strategy
consists of introducing a new goal stating that if the bound-

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

ary condition B occurs then the divergent goal assertions Ai

become true again in some reasonably near future:

B ⇒ ◊≤d ∧1≤ i ≤n�Ai

For the library example above, this strategy would corre-
spond to temporarily breaking goal (G2) by forcing some
member to return her copy even if she still needs it.

5.1.3 Conflict Anticipation
This strategy can be applied when some persistent condi-
tion P can be found such that, in some context C, one in-
evitably gets into a conflict after some time if the condition
P has persisted over a too long period:

C ∧ o≤d P ⇔ ◊≤d ¬ ∧1≤ i ≤n�Ai

In such a case, one may introduce the following new goal to
avoid the conflict by anticipation:

C ∧ P ⇒ ◊≤d ¬ P

An example for the particular case where n = 1 would be a
patient monitoring system where C is instantiated to
“monitoring working,” P to “some monitor value exceed-
ing its threshold,” and A to “patient alive.”

5.1.4 Goal Weakening
This is probably the most common strategy for resolving di-
vergence. The principle is to weaken the formulation of one or
several among the divergent goals so as to make the diver-
gence disappear. Let us illustrate the technique on an example
first. Consider the goals Achieve[RequestSatisfied] and
Avoid[UnReliableResourceUsed]; these goals were seen
to be divergent in Section 4.2 by use of the first divergence
pattern in Fig. 4. Their assertions were:

Requesting(u, r) Æ ◊ Using (u, r)

¬ Reliable(r) Æ o ¬ Using(u, r)

(Universal quantifiers are again left implicit.) The boundary
condition was:

(◊ $ u: User, r: Resource) [Requesting (u, r) Á ¬ Reliable (r)]

The divergence can be resolved by weakening the first goal
to make it cover the boundary condition. This yields:

Requesting (u, r) ∧ Reliable (r) ⇒ ◊ Using (u, r)

It is easy to see that the boundary condition is now cov-
ered by this weakening; converting the above assertion into
disjunctive form and using the tautology P ∨ Q ≡ P ∨ ¬ P ∧ Q
we get:

¬ Requesting (u, r) ∨ Requesting (u,r) ∧ ¬ Reliable (r) Â ◊ Using (u, r)

The goal weakening needs to be compensated by the in-
troduction of the new goal

Requesting (u, r) Æ ◊ (Requesting (u, r) ∧ Reliable (r))

to make sure that the antecedent strengthening in the
weakened goal becomes true at some point so that the ini-
tial target condition can be established in spite of the ante-
cedent strengthening.

The principle is thus to make some goals more liberal so
that they cover the boundary conditions. Once more liberal

goals are obtained, their weakening needs to be propagated
in the goal graph to replace the older, divergent versions.

The weakening procedure is more precisely described as
follows:

1)�Weaken some goal formulations to obtain more liberal
versions that cover the boundary conditions. Syntactic
generalization operators [20], [29] can be used here,
such as adding a disjunct, removing a conjunct, or
adding a conjunct in the antecedent of an implication.

2)�For each weakened goal, propagate the predicate
changes in the goal AND-tree in which this goal is in-
volved, by replacing every occurrence of the old
predicates by the new ones.

The decision on which goal to weaken will depend on the
priority and utility of the divergent goals. In the “French re-
viewer” example, one will clearly weaken the goal Maintain
[ReviewIntegrity] to allow making English corrections,
removing signature information, and so on. The alternative
weakening of the goal Maintain[ReviewerAnonymity]
should not be considered.

Goal weakening often needs to be compensated by some
strengthening elsewhere in the specification, for example,
by addition of new goals (see the first example above). A
new cycle of divergence analysis may then be required.

Resolution patterns can also be identified to guide the
goal weakening process. Here are a few such patterns.

•� Temporal relaxation:

weaken ◊≤d A to ◊≤c A (c > d)

weaken o≤d A to o≤c A (c < d)

•� Resolve the Achieve-Avoid divergence pattern

P ⇒ ◊ Q vs. R ⇒ o ¬ Q
by

–� weakening the first assertion: P ∧ ¬ R ⇒ ◊ Q,

–� keeping the second assertion: R ⇒ o ¬ Q,

–� strengthening the specification by adding the
 new goal: P ⇒ ◊ (P ∧ ¬ R)

This resolution pattern was used in the first example of
goal weakening above. An example of temporal relaxation
is the extension of the date range for scheduling meetings
when there is a conflict, or the extension of a paper submis-
sion deadline when there are competing conferences.

An extreme case of goal weakening is sacrificing, that is,
deleting one of the goals to eliminate the divergence. For
example, there may be two divergent goals in an automatic
teller machine, namely,

1)�Avoid[CardForgottenInATM] and
2)�Maintain[UserComfort].

The first goal is operationalized by asking users to get their
card back before taking cash, whereas the latter is opera-
tionalized by asking users to get their card back at the very
end of the session when no further operation is asked. In
some countries, the conflict is resolved by sacrificing Goal 1.

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 923

As another real-world example, consider the following
three goals in a conference management system:

Maintain[ConfidentialityOfSubmissions],
Achieve[AuthorsInformedOfReceipt],
Avoid[ProgramChairOverloaded].

One can show that these three goals are divergent when
taken together. The resolution that was recently chosen in
some conference was to email all authors an acknowledge-
ment in which all email addresses of submittors appeared,
thus sacrificing the confidentiality goal.

5.1.5 Alternative Goal Refinement
In case of hard divergences that cannot be satisfactorily
resolved through other strategies, one should investigate
alternative refinements of goals at a higher level than the
level at which the divergence occurred. The aim here is to
obtain alternative subgoals which are no longer divergent,
or whose divergence can be resolved by use of the other
strategies. Alternative goal refinements may often result in
different system proposals in which more or less function-
ality is automated and in which the interaction between the
software and its environment may be quite different.

To illustrate this, consider the meeting scheduler system
again and the divergence between the goals:

Achieve[ParticipantsConstraintsRequested],
Achieve[RemindersSent],
Achieve[ParticipantsConstraintsProvided]

on one hand, and the goal:

Minimize[Participant Interaction]

on the other hand. One way to resolve such a conflict is to
go up in the goal refinement graph and reconsider alterna-
tive ways of refining the parent goal:

Achieve[ParticipantsConstraintsKnown].

An alternative design based on the scheduler accessing
participant’s electronic agendas might then be explored to
resolve the divergence.

5.1.6 Divergence Resolution Heuristics
Heuristics for specific divergence categories may be used as
a cheap alternative to formal techniques. We just give a few
examples of heuristic rules here to illustrate the principle; a
complete set of such rules is outside the scope of this paper.

•� If there is a Competition divergence among multiple
agent instances, then a resolution by introduction of an
Arbitrator agent should be considered. Using this
heuristic rule would lead to the introduction of an arbi-
trator to resolve the conflict between two instantiations of
the goal Achieve[NearestFreeAmbulanceDispatched]
in the London Ambulance system, in case of two simul-
taneous accidents near each other.

•� If there is a Competition divergence among multiple
agent instances, then a resolution by introduction of a
reservation policy on the object of competition should be
considered.

•� If there is a divergence between a ConfidentialityGoal
and an InformationGoal concerning the same object,
then a resolution by restricted goals concerning speciali-
zations of the Known object should be considered.

•� If there is a divergence between a ConfidentialityGoal
and an InformationGoal concerning the same object, then
a resolution by restricted goals involving specializations of
the Knowing agents should be considered.

The last two rules involve transformations of object struc-
tures; we turn to this now.

5.2 Object Transformation
Under this family, we group all operators which create, de-
lete, or modify object types. We give a few such operators
here which have proved helpful in practice. A rich set of
object restructuring operators is proposed in [48].

5.2.1 Object Refinement
The idea is to specialize an object type into disjoint subtypes
and to restrict the divergent assertions to the corresponding
subtypes. Consider, for example, the divergence between the
security goal Maintain[ReviewerAnonymity] and the in-
formation goal Achieve[EditorialBoardInformed]; the
boundary condition captures the situation where members of
the editorial board are submitting papers. To prevent them
from knowing the full submission status file (which contains
the names of the reviewers for each paper), the conflict is re-
solved by specializing the PaperStatusFile object type into
two subtypes: the (complete) EIC-StatusFile accessible by
the editor-in-chief only, and the EdBoard-StatusFile which
contains no reviewer names. The corresponding goals are then
specialized accordingly. Note that the specialization may need
to be propagated to domain descriptions in Dom; e.g., descrip-
tions that involved the PaperStatusFile object type now
need to refer to the specialized types introduced if they be-
come specific to them.

Objects can also be “weakened” by extending the range
of values for some of their attributes. For example, one can
resolve conflicts between competing requests for meetings
by extending the date range specified in the requests.

5.2.2 Agent Refinement
Divergent assertions that involve agents can sometimes be
resolved by

1)� specializing the corresponding agent types into dis-
joint subtypes, and

2)� restricting the divergent assertions to the corre-
sponding subtypes.

The principle is thus the same as above. Consider, for exam-
ple, the divergence between the goals Achieve[Patient
Informed] and Maintain[MedicalSecret] in a hospital
management system. One way to resolve the divergence is
to let parents of the patient access some specific items of the
patient’s file. (Note that this resolution integrates both ob-
ject refinement and agent refinement.) Again, some domain
descriptions may need to be transformed accordingly.

6 CONCLUSION

Requirements engineers live in a world where inconsisten-
cies are the rule, not the exception. There are many different
kinds of inconsistency; many of them originate from the
elicitation of goals and requirements from multiple
stakeholders, viewpoints, and independent documents. Tol-

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

erating such inconsistencies for a while is desirable as it
increases the chances of getting more relevant information
and, in the end, more complete and adequate requirements.
However, detecting inconsistencies and resolving them at
some stage or another of the requirements engineering pro-
cess is a necessary condition for successful development of
the software implementing the requirements.

This paper has proposed a formal framework for clari-
fying various types of inconsistency that can arise in the RE
process; special attention has been given to one very general
kind of inconsistency that surprisingly has received no at-
tention so far in the literature. Divergence was seen to be a
frequently occurring generalization of the usual notion of
conflict, with some interesting particular cases. Various for-
mal and heuristic techniques were then proposed for detect-
ing and resolving divergences among goals/requirements in
a systematic fashion. The notion of boundary condition was
seen to play a prominent role in this context.

One key principle in the paper is to start thinking about
divergences as early as possible in the requirements engi-
neering process, that is, at the goal level. The earlier diver-
gence analysis is started, the more freedom is left for re-
solving the divergences.

Domain knowledge was seen to play an important role
in some of these techniques. In fact, this knowledge delim-
its the space of boundary conditions that can be found.
However, as we pointed out, such knowledge can be elic-
ited stepwise during divergence analysis.

When to apply such-and-such technique may depend on
the domain, on the specific application in this domain, on
the kind of divergence, on the likelihood of occurrence of
boundary conditions, on the severity of the consequences of
the resulting conflict, and on the cost of divergence resolu-
tion. Much work remains to be done to determine precisely
when it is appropriate to apply each technique.

A question that may arise is the extent to which diver-
gence among goal assertions could be detected using model
checking technology. The strength of model checking tech-
niques is that they could, at low cost, generate scenarios
satisfying the boundary conditions we are looking for; such
scenarios would be produced as traces that refute the di-
vergent assertions conjoined with the domain theory. How-
ever, we currently envision two problems in applying ex-
isting model checking techniques directly for our purpose.
On one hand, we want to conduct the analysis at the goal
level for reasons explained throughout the paper; model
checking requires the availability of an operational descrip-
tion of the target system (such as a finite state transition
system [6], [37], [19]) or of relational specifications [26] that
do not fit our formulation of goals in terms of temporal
patterns of behavior. On the other hand, for the purpose of
resolution, we need to obtain a formal specification of the
boundary condition rather than an instance-level scenario
satisfying it. A derivation calculus on more abstract specifi-
cations seems, therefore, more appropriate, even though
instance scenarios generated by a tool like Nitpick [26]
could provide concrete insights for detecting divergence
among relational specifications.

We hope to have convinced the reader through the wide
variety of examples given in this paper that the techniques

proposed are general, systematic, and effective in identifying
and resolving subtle divergences. Our plan is to integrate
these techniques in the KAOS/GRAIL environment [11] so
that large-scale experimentation on industrial projects from
our tech transfer institute can take place. In fact, several di-
vergences were recently detected in two real projects using
our techniques. The first project was the engineering of re-
quirements for a system to support the emergency service of
a major Belgian hospital. Examples of divergences that were
handled with our techniques included the divergence be-
tween the goals Avoid[ServiceOvercrowding] and
Achieve[PatientAccompanied]; and the divergence be-
tween the goals Achieve[PromptAction] and Achieve
[MaximalInformationAcquired]. The second project
concerned the development of a complex software system
to support goods delivery to retailers. An interesting case
detected using our technique was the divergence between
the retailer’s goal of one-hour delivery for every order and
the company’s goal of one delivery per day for every re-
tailer (the latter obviously refined a cost reduction goal).
The boundary condition found captured the situation of a
retailer making more than one order on the same day. The
resolution that was chosen among those identified was to
reward retailers that group all their orders for the same day
within one single batch to be submitted once a day.

ACKNOWLEDGMENTS

The work reported herein was partially supported by the
“Communauté Française de Belgique” (FRISCO project,
Actions de Recherche Concertées Nr. 95/00-187—Direction
générale de la Recherche). Partial support was also pro-
vided while the first author was on sabbatical at SRI Inter-
national by the Advanced Research Projects Agency under
Air Force Research Laboratory contract number F30602-97-
C-0040. Many thanks to the inconsistency management
groups at Imperial College, City University, and Politecnico
di Milano for sharing (sometimes divergent) views on in-
consistency management. Christophe Ponsard made help-
ful comments on an earlier version of this paper. We greatly
appreciate the detailed comments and constructive sugges-
tions made by the reviewers.

REFERENCES

[1]� M. Abadi, “Temporal-Logic Theorem Proving,” PhD thesis, Stan-
ford Univ., Mar. 1987.

[2]� E.J. Amoroso, Fundamentals of Computer Security. Prentice Hall,
1994.

[3]� A.I. Anton, W.M. McCracken, and C. Potts, “Goal Decomposition
and Scenario Analysis in Business Process Reengineering,” Proc.
Sixth Int’l Conf. Advanced Information Systems Eng., pp. 94-104,
Lecture Notes in Computer Science 811, Springer-Verlag, 1994.

[4]� B.W. Boehm, P. Bose, E. Horowitz, and M.J. Lee, “Software Re-
quirements Negotiation and Renegotiation Aids: A Theory-W
Based Spiral Approach,” Proc. ICSE-17—17th Int’l Conf. Software
Eng., pp. 243-253, 1995.

[5]� Readings in Knowledge Representation, R.J. Brachman and H.J.
Levesque, eds. Morgan Kaufmann, 1985.

[6]� E.M. Clarke and E.A. Emerson, “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications,”
ACM Trans. Programming Language Systems, vol. 8, no. 2, pp. 244-
263, 1986.

[7]� G. Cugola, E. Di Nitto, A. Fuggetta and C. Ghezzi, “A Framework
for Formalizing Inconsistencies and Deviations in Human-

VAN LAMSWEERDE ET AL.: MANAGING CONFLICTS IN GOAL-DRIVEN REQUIREMENTS ENGINEERING 925

Centered Systems,” ACM Trans. Software Eng. and Methodology,
vol. 5, no. 3, pp. 191-230, July 1996.

[8]� A. Dardenne, S. Fickas and A. van Lamsweerde, “Goal-Directed
Concept Acquisition in Requirements Elicitation,” Proc. IWSSD-
6—Sixth Int’l Workshop Software Specification and Design, pp. 14-21,
Como, Italy, 1991.

[9]� A. Dardenne, A van Lamsweerde, and S. Fickas, “Goal-Directed
Requirements Acquisition,” Science of Computer Programming, vol. 20,
pp. 3-50, 1993.

[10]� R. Darimont and A. van Lamsweerde, “Formal Refinement Pat-
terns for Goal-Driven Requirements Elaboration,” Proc. FSE’4—
Fourth ACM SIGSOFT Symp. Foundations of Software Eng., pp. 179-
190, San Francisco, Oct. 1996.

[11]� R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde,
“GRAIL/KAOS: An Environment for Goal-Driven Requirements
Engineering,” Proc. ICSE’98—20th Int’l Conf. Software Eng., vol. 2,
pp. 58-62, Kyoto, Japan, Apr. 1998.

[12]� E. Dubois, N. Levy, and J. Souquières, “Formalising Restructuring
Operators in a Specification Process,” Proc. ESEC-87—First Euro-
pean Software Eng. Conf., pp. 161-171, Sept. 1987.

[13]� S. Easterbrook, “Domain Modelling with Hierarchies of Alterna-
tive Viewpoints,” Proc. RE’93—First Int’l Symp. Requirements Eng.,
San Diego, Calif., 1993.

[14]� M. Feather, “Language Support for the Specification and Devel-
opment of Composite Systems,” ACM Trans. Programming Lan-
guages and Systems, vol. 9, no. 2, pp. 198-234, Apr. 1987.

[15]� M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard, “Rec-
onciling System Requirements and Runtime Behavior,” Proc.
IWSSD’98—Ninth Int’l Workshop Software Specification and Design,
pp. 50-59, Ise-Shima, Japan, Apr. 1998.

[16]� S. Fickas and M. Feather, “Requirements Monitoring in Dynamic
Environments,” Proc. RE’95—Second Int’l Symp. Requirements Eng.,
York, U.K., 1995.

[17]� A. Finkelstein and H. Fuks, “Multi-Party Specification,” Proc. Fifth
Int’l Workshop Software Specification and Design, Pittsburgh, Pa.,
May 1989.

[18]� A. Finkelstein, “The London Ambulance System Case Study,”
Proc. IWSSD8—Eighth Int’l Workshop Software Specification and De-
sign, ACM Software Engineering Notes, Sept. 1996.

[19]� R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple On-the-Fly
Automatic Verification of Linear Temporal Logic,” Proc. IFIP
WG6.1 Symp. Protocol Specification, Testing and Verification, North
Holland, 1995.

[20]� D. Gries, The Science of Programming. Springer-Verlag, 1981.
[21]� M.P. Heimdahl and N.G. Leveson, “Completeness and Consis-

tency Analysis of State-Based Requirements,” Proc. ICSE’95—17th
Int’l Conf. Software Eng., pp. 3-14, Seattle, Wash., 1995.

[22]� C. Heitmeyer, R. Jeffords, and B. Labaw, “Automated Consistency
Checking of Requirements Specifications,” ACM Trans. Software
Eng. and Methodology, vol. 5, no. 3, pp. 231-261, July 1996.

[23]� A. Hunter and B. Nuseibeh, “Analyzing Inconsistent Specifica-
tions,” Proc. RE’97—Third Int’l Symp. Requirements Eng., pp. 78-86,
Annapolis, Md., 1997.

[24]� M. Jackson and P. Zave, “Domain Descriptions,” Proc. RE’93—
First Int’l IEEE Symp. Requirements Eng., pp. 56-64, Jan. 1993.

[25]� D. Jackson, “Structuring Z Specifications with Views,” ACM
Trans. Software Eng. and Methodology, vol. 4, no. 4, pp. 365-389, Oct.
1995.

[26]� D. Jackson, “Elements of Style: Analyzing a Software Design
Feature with a Counterexample Detector,” Proc. ACM Int’l Symp.
Software Testing and Analysis, pp. 239-249, San Diego, Calif., 1996.

[27]� A.J. Jones and M. Sergot, “On the Characterization of Law and
Computer Systems: the Normative System Perspective,” Deontic
Logic in Computer Science—Normative System Specification, J.C.
Meyer and R.J. Wieringa, eds. Wiley, 1993.

[28]� R. Koymans, Specifying Message Passing and Time-Critical Systems
with Temporal Logic. Springer-Verlag, 1992.

[29]� A. van Lamsweerde, “Learning Machine Learning,” Introducing a
Logic Based Approach to Artificial Intelligence, A. Thayse, ed., vol. 3,
pp. 263-356. Wiley, 1991.

[30]� A. van Lamsweerde, R. Darimont, and P. Massonet, “Goal-Directed
Elaboration of Requirements for a Meeting Scheduler: Problems
and Lessons Learned,” Proc. RE’95—Second Int’l Symp. Require-
ments En., York, U.K., 1995.

[31]� A. van Lamsweerde, “Divergent Views in Goal-Driven Require-
ments Engineering,” Proc. Viewpoints’96—ACM SIGSOFT Work-
shop Viewpoints in Software Development, Oct. 1996.

[32]� A. van Lamsweerde and E. Letier, “Integrating Obstacles in Goal-
Driven Requirements Engineering,” Proc. ICSE’98—20th Int’l Conf.
Software Eng., Kyoto, Japan, Apr. 1998.

[33]� A. van Lamsweerde and L. Willemet, “Inferring Declarative Re-
quirements Specifications from Operational Scenarios,” IEEE
Trans. Software Eng., vol. 24, no. 12, Dec. 1998. to appear

[34]� Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1992.

[35]� Z. Manna and the STep Group, “STeP: Deductive-Algorithmic
Verification of Reactive and Real-Time Systems,” Proc. CAV’96—
Eighth Int’l Conf. Computer-Aided Verification, pp. 415-418, July 1996.

[36]� P. Massonet and A. van Lamsweerde, “Analogical Reuse of Re-
quirements Frameworks,” Proc. RE-97—Third Int’l Symp. Require-
ments Eng., pp. 26-37, Annapolis, Md., 1997.

[37]� K.L. McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer, 1993.

[38]� B. Meyer, “On Formalism in Specifications,” IEEE Software, vol. 2,
no. 1, pp. 6-26, Jan. 1985.

[39]� J. Mylopoulos, L. Chung, and B. Nixon, “Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach,”
IEEE Trans. Software. Eng., vol. 18, no. 6, pp. 483-497, June 1992.

[40]� J. Mylopoulos and R. Motschnig-Pitrik, “Partitioning Information
Bases with Contexts,” Proc. Third Int’l Conf. Cooperative Information
Systems, Vienna, May 1995.

[41]� C. Niskier, T. Maibaum, and D. Schwabe, “A Pluralistic Knowl-
edge-Based Approach to Software Specification,” Proc. ESEC-89—
Second European Software Eng. Conf., pp. 411-423, Sept. 1989.

[42]� B. Nuseibeh, J. Kramer, and A. Finkelstein, “A Framework for
Expressing the Relationships Between Multiple Views in Re-
quirements Specifications,” IEEE Trans. Software Eng., vol. 20, no. 10,
pp. 760-773, Oct. 1994.

[43]� B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specifica-
tion and Z. Prentice Hall, 1991.

[44]� C. Potts, K. Takahashi, and A.I. Anton, “Inquiry-Based Require-
ments Analysis,” IEEE Software, vol. 11, no. 2, pp. 21-32, Mar. 1994.

[45]� C. Potts, “Using Schematic Scenarios to Understand User Needs,”
Proc. DIS’95—ACM Symp. Designing interactive Systems: Processes,
Practices, and Techniques, Univ. of Michigan, Aug. 1995.

[46]� W.N. Robinson,, “Integrating Multiple Specifications Using Do-
main Goals,” Proc. IWSSD-5—Fifth Int’l Workshop Software Specifi-
cation and Design, pp. 219-225, 1989.

[47]� W.N. Robinson, “Negotiation Behavior During Requirement Speci-
fication,” Proce. ICSE12—12th Int’l Conf. Software Eng., pp. 268-276,
Mar. 1990.

[48]� W.N. Robinson and S. Volkov, “A Meta-Model for Restructuring
Stakeholder Requirements,” Proc. ICSE19—19th Int’l Conf. Soft-
ware Eng., pp. 140-149, Boston, May 1997.

[49]� D.T. Ross and K.E. Schoman, “Structured Analysis for Require-
ments Definition,” IEEE Trans. Software Eng., vol. 3, no. 1, pp. 6-15,
1977.

[50]� K.S. Rubin and A. Goldberg, “Object Behavior Analysis,” Comm.
ACM, vol. 35, no. 9, pp. 48-62, Sept. 1992.

[51]� K. Ryan and S. Greenspan, “Requirements Engineering Group
Report,” Proc. IWSSD8—Eighth Int’l Workshop Software Specification
and Design, ACM Software Eng. Notes, pp. 22-25, Sept. 1996.

[52]� I. Sommerville and P. Sawyer, Requirements Engineering: A Good
Practice Guide. Wiley, 1997.

[53]� G. Spanoudakis and A. Finkelstein, “Interference in Requirements
Engineering: the Level of Ontological Overlap,” Report TR-
1997/01, City Univ., London, U.K., 1997.

[54]� R. Waldinger, “Achieving Several Goals Simultaneously,” Machine
Intelligence, vol. 8, E. Elcock and D. Michie, eds. Ellis Horwood,
1977.

[55]� K. Yue, “What Does It Mean to Say that a Specification is Com-
plete?” Proc. IWSSD-4, Fourth Int’l Workshop Software Specification
and Design, 1987.

[56]� P. Zave and M. Jackson, “Conjunction as Composition,” ACM
Trans. Software Eng. and Methodology, vol. 2, no. 4, pp. 379-411,
1993.

[57]� P. Zave and M. Jackson, “Four Dark Corners of Requirements
Engineering.” ACM Trans. Software Eng. and Methodology, vol. 6,
no. 1, pp. 1-30, 1996.

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Axel van Lamsweerde received the MS degree
in mathematics from the Université Catholique
de Louvain, Belgium, and the PhD degree in
computing science from the University of Brus-
sels. He is a full professor of computing science
at the Université Catholique de Louvain, Bel-
gium. From 1970 to 1980, he was a research
associate with the Philips Research Laboratory
in Brussels, where he worked on proof methods
for parallel programs and knowledge-based
approaches to automatic programming. He was

then a professor of software engineering at the Universities of Namur
and Brussels until he joined UCL in 1990. He is co-founder of the
CEDITI technology transfer institute, partially funded by the European
Union. He has also been a visitor at the University of Oregon and the
Computer Science Laboratory of SRI International, Menlo Park.

Dr. van Lamsweerde’s professional interests are in lightweight for-
mal methods and tools for assisting software engineers in knowledge-
intensive tasks. His current focus is on constructive, technical ap-
proaches to requirements engineering and, more generally, to formal
reasoning about software engineering products and processes. His
recent papers can be found at http://www.info.ucl.ac.be/people/avl.html.

Dr. van Lamsweerde was program chair of the Third European
Software Engineering Conference (ESEC ’91), program co-chair of the
Seventh IEEE Workshop on Software Specification and Design
(IWSSD-7), and program co-chair of the ACM-IEEE 16th International
Conference on Software Engineering (ICSE-16). He is a member of
the editorial boards of the Automated Software Engineering Journal
and the Requirements Engineering Journal. Since 1995, he has been
editor-in-chief of the ACM Transactions on Software Engineering and
Methodology (TOSEM). He is a member of the IEEE, ACM, and AAAI.

Robert Darimont received the MS and PhD
degrees in applied sciences (computing science
orientation) from the Université Catholique de
Louvain, Belgium. He is the manager of the
Software Engineering Group at CEDITI, the IT
transfer center of the University of Louvain. He
works on the development of GRAIL, the tool
supporting the KAOS methodology for goal-
oriented requirements engineering; leads in-
dustrial projects using KAOS; and helps com-
panies to adopt up to date and precompetitive

software engineering technologies. Dr. Darimont is a member of the
IEEE and the ACM and the information director of the ACM Transac-
tions on Software Engineering and Methodology (TOSEM).

Emmanuel Letier received the degree of engi-
neer in applied mathematics in 1995 from the
Université Catholique de Louvain, Belgium. He
is currently pursuing PhD research on formal
reasoning about agents during requirements
elaboration at the Département d'Ingénierie
Informatique of this university.

