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A Syntactic Theory of Software Architecture 
Thomas R. Dean and James R. Cordy 

Abstract- In this paper we introduce a general, extensible 
diagrammatic syntax for expressing software architectures based 
on typed nodes and connections and formalized using set theory. 
The syntax provides a notion of abstraction corresponding to the 
concept of a subsystem, and exploits this notion in a general mech- 
anism for pattern matching over architectures. We demonstrate 
these ideas using a small example architecture language with a 
limited number of types of nodes and connectors, and a small 
taxonomy of architectures characterized as sets of patterns in the 
language. 

Index Terms- Software architecture, software structure, pat- 
tern matching. 

I. INTRODUCTION 

ARLAN AND SHAW 171, [lo] argue that larger sys- 
tems require a higher level of abstraction. Larger and 

more complex systems are not easily handled using current 
techniques. They claim that simple identification of system 
structures and types is not sufficient; in order to facilitate 
meaningful analysis and comparison, they must be expressed 
using a uniform notation. Our work provides a first, syntactic 
level approach to addressing this software architecture level. 

The motivation for our work is to provide a formal syntax 
that will serve as a framework within which we can discuss 
other issues, such as component and system behavior, and 
to compare and contrast different architectural styles. We use 
a diagrammatic representation in order to be consistent with 
traditional practice. 

Our syntax must be useful at several levels. The first is 
to expose the architectural structure of individual systems. At 
this level it provides a foundation on which the semantics 
of individual components and the system as a whole may be 
based. To be general, it is important that the syntax should not 
bias the expression of a system to any particular paradigm of 
system organization. 

At the second level, the framework must abstract details of 
particular components, and provide a means of categorizing 
architectural paradigms. Since our framework is syntactic, the 
architectural paradigms we classify are syntactic paradigms. 
To serve as a framework for an architectural theory, the 
mechanism must be open. That is, it must provide a means 
of including constraints on system classification based on 
semantics introduced at the first level. 
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At the third level, the framework must provide some means 
of expressing architectural paradigms. It is not enough simply 
to be able to state that a given system description is a 
member of a particular architectural class, it must also be 
possible to describe each paradigm in a manner that allows 
new systems to be instantiated from the paradigm. We believe 
that the approach presented in this paper provides a syntactic 
framework that works at all of these levels. 

A. Outline 

We approach the problem in three steps. We begin by 
identifying those Characteristics of an architectural syntax 
necessary to our approach and present a simple diagrammatic 
language that illustrates these characteristics in an informal 
manner in Section 11. The example language is intentionally 
incomplete-it lacks semantics, and features have been kept 
to a minimum in order to focus the readers attention on the 
approach rather than the details. Section I11 formalizes the 
example notation and defines several operations, including 
interface, abstraction and equivalence. 

The second step is to provide a syntactic pattern matching 
mechanism that exploits the characteristics of the notation. 
The pattem mechanism is not tied to the example language, 
but will work with any architectural language with similar 
characteristics. It can be easily extended to take semantics into 
account. The pattern mechanism is described in Section IV. 

The third step is to show how the pattern mechanism can 
be used to construct a taxonomy of architectural styles. For 
any given architectural language, the taxonomy will reflect 
those elements that can be distinguished in the language. Since 
only the syntax of the language is described, the taxonomy is 
limited to the syntactic structures that may be distinguished 
by the language. We show an example taxonomy expressed 
as patterns of our simple example language. Surprisingly, 
even with the limited syntax of our example language, a rich 
taxonomy can be built encompassing most of the common 
architectural paradigms. The taxonomy is described in Section 
V. 

Section VI provides some conclusions and directions for 
future research. 

11. ARCHITECTURAL SYNTAX AND AN EXAMPLE NOTATION 
The essential characteristics of an architectural syntax upon 

which our method depends are: the use of syntactic types to 
characterize the major kinds of components and connections 
in a system; a structural definition for interfaces of systems; 
and a notion of equivalence based on the structural interfaces. 
These characteristics form the basis of the pattem matching 
mechanism which is at the foundation of our work. 
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Fig. 1. Canonical compiler structure. 

This section describes types, interfaces and abstraction in 
an informal manner through the introduction of an example 
architecture language. The notation is formalized in the next 
section, where equivalence is also defined. 

A. Types 

The pattern mechanism relies on the use of syntactic types 
to distinguish between the elements of a system. Types abstract 
some aspect of a component or connections intended function 
or behavior in much the same way as data types abstract 
function and behavior in programming languages. Types may 
also impose syntactic constraints on the permissible relations 
between elements of the system. For the purposes of under- 
standing system structure paradigms, we are interested only in 
the form of the system, not in its function. 

The choice of types in the example language introduced 
below is intentionally limited. This was done to emphasize 
the method rather than the particular types chosen. Other 
realizations of our approach may have more types of elements, 
either as separate types, or as subtypes of the existing element 
types. These alternate notations may also provide stricter 
interpretations of the types. That is, the semantics of the new 
types may impose more restrictions on the properties common 
to instances of the types. 

B. An Example Architecture Language 

The syntax of our example language is based on typed, 
directed multigraphs. A typed, directed multigraph provides 
typed nodes and typed edges and permits more than one edge 
of a given type between nodes. We extend the multigraph 
to allow edges with arbitrary arity: these may connect any 
number of nodes. 

We introduce our example language using example systems 
that motivate the choice of the types. Fig. 1 shows our 
architectural representation of the canonical compiler structure 
typically used in undergraduate compiler courses. It is not 
a complete representation of a real compiler since the error 
stream is not represented, nor are multiple input files. 

Rectangles represent memory elements of the system. Sim- 
ple rectangles are Files. Files are malleable data repositories 
that are intended to be accessed sequentially. The symbol com- 
posed of nested rectangles is a Random Access Repository-or 
simply, Repository. The repository type models memories 
that may be modified and accessed at random (e.g., shared 
memory and databases). In the example, it models the symbol 
table that is shared between the parser, semantic analyzer and 
code generator. Circles represent Tasks, which are the active 

Fig. 2. Possible shell characterization 

components of the system. At present, tasks are the only active 
component type. 

The types of the connections are indicated by the graphi- 
cal characteristics of the arrows. Fig. 1 shows two types of 
connectors, Streams and Memory Access Connectors. Streams 
are represented as solid arrows and are binary connections 
between tasks. They represent the direct exchange of data 
between tasks and may be unidirectional or bidirectional. As 
with all of the connectors, the implementation or the protocol 
is not represented. The stream may be implemented over 
a network, and the protocol may involve message passing. 
Our notation only shows the type of the connection between 
the two tasks. In the example, all of the streams are uni- 
directional. The arrows with short dashes represent memory 
access connections. They are binary connections between a 
task and a memory component. As with streams, they may be 
unidirectional or bidirectional. 

Fig. 2 shows the possible characterization of a Unix shell 
creating a sed (stream editor) process. The task in‘the upper 
center of the diagram represents the shell. It has a single 
read stream and two write streams to the task that represents 
the terminal driver. The two write streams are distinct and 
represent sdout and stderr. 

The dotted arrow between the shell task and the sed task is 
an invocation connector. It represents one process starting an- 
other process. This connection and the production connection 
are used to model dynamic changes to the system structure. 
The production connection models the creating of a task by 
another and is represented by a curved arrow. An example 
of production is the link phase of a compiler, or a task that 
produces another custom task for a problem. 

The rectangle with the grid in Fig. 2 represents a ruble. 
Tables are intended to model long term data that undergoes few 
if any changes, such as static system data. The name “table” 
is not intended to imply any particular intemal structure or 
format. For example, the table in Fig. 2 represents the script 
file that contains the edit commands for the stream editor. 

Fig. 3 shows a characterization of several tasks commu- 
nicating over a network. The arrows with the double heads 
are procedure connections. These represent the connections in 
layered systems. In the example, the two tasks at the bottom of 
the figure represent the kernel layer. The other tasks represent 
tasks using the kemel layer to communicate over the network. 

The network is represented by a message connector, de- 
picted as a line with two double bodied arrows connecting the 
tasks to the line. The message connector is the one type in 
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connection is an indication that a connector of that type may be 
used to connect the partial system to other systems. Expected-- 
connections are shown in gray. A partial system is one that 
contains incomplete connections or expected connections. 

Expected connections of a partial system may be thought 
of as variable connections. That is, they are place holders that 
may be bound to a connector to incorporate the subsystem 
into another system. Incomplete connectors may be thought 
of as connecting one or more variable nodes. An incomplete 
connector may be used to connect two or more partial systems 
by binding the expected connections of the systems to the 
incomplete connector, and binding the variable nodes of the 

Fig. 3. Procedure and message connectors. 
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Fig. 4. Summary of notation symbols. 

our example types that may connect an arbitrary number of 
tasks. Each task may have one or more read and write sites 
on the connector, represented by the double bodied mows. In 
the example, the tasks on the left may only send data to the 
tasks on the right, since the kemel process on the left has only 
a write site on the message connection. 

As with all connectors, the message connector is not re- 
stricted to networks. All of the tasks may be on the same 
machine. The message connection models a software structure 
where a task may use a single connection to send information 
to one or more other tasks, either singly, or as a group. The 
purpose of the message connector in our example notation is 
to show that architectural languages should not be restricted to 
binary, or even fixed arity connectors. Architectural languages 
should allow the representation of a wide variety of structures, 
and not limit the user to a particular set of paradigms. 

Fig. 4 provides a summary of the symbol types used in our 
simple example architecture language. 

C. Partial Systems 

If we are to be able to analyze larger system architectures, it 
must be possible to describe the parts of a system separately. 
One such part of a system is an incomplete connection. An 
incomplete connection is a connection that is part of a system, 
but is missing a node. An example is a memory access 
connector connected to a task, but not connected to a memory 
node. Since a message connector may connect an arbitrary 
number of nodes, it can not be an incomplete connection. 
It may, however, be an expected connection. An expected 

incomplete connector to nodes ofthe subsystems. 
Although any partial system could be described, our notation 

distinguishes two types of partial systems: connector subsys- 
tems, which fulfill the role of connectors and nodal subsystems, 
which play the role of nodes. The two types of partial systems 
correspond to the two types of abstraction provided by the 
notation, which are described next. 

D. System Interface and Abstraction 

Individual elements of a given system may represent entire 
systems. This idea is not new and has been used in more than 
one approach including that of Abowd, Allen, and Garlan [l], 
[2]. An important nontraditional aspect of our notation is that 
it supports encapsulation of subsystems as connectors as well 
as components. 

The concepts of interface and abstraction are tightly coupled 
in our approach. The interface of an element and the subsystem 
it represents (or abstracts) must match. Although this idea 
not new, it forms one of the cornerstones of our pattern 
matching mechanism. It also provides the means to incorporate 
semantic information into pattern matching. Pattem matching 
is explained in Section IV. 

Our interface function transforms a partial system into the 
minimum system that may be used in the same way as the 
original system. In our example notation we use a simple 
rule: when a single primitive can replace a partial system, we 
use the symbol for that primitive to represent the abstraction 
of that subsystem. This special case is called homogeneous 
abstraction. The general case, heterogeneous abstraction, is 
handled separately. We discuss both these types of abstraction 
for both nodal and connector subsystems. 

E. Homogeneous and Heterogeneous Abstraction 

When the only nodes inside an abstracted subsystem that 
have connections outside the group are of the same type, 
the abstraction is said to be homogeneous, and the symbol 
used for the group is the symbol of the type. Fig. 5 shows 
an example use of homogeneous abstraction to abstract a 
task and table subsystem into a task abstraction. The figure 
represents a possible characterization of the lexer phase of 
a canonical compiler, where the table is used to dnve some 
skeleton algorithm. 

For heterogeneous abstraction, a group of nodes and the 
connections between the nodes is replaced by a single node, the 
type of which is heterogeneous node. The new node assumes 
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Fig. 7. Homogeneous abstraction for connectors. 

all of the external connections of the group and preserves the 
types of the connections. The symbol for heterogeneous nodes 
is the hexagon. Fig. 6 shows an example of heterogeneous 
abstraction. Several memory nodes and a task are abstracted. 
The small diagram of a repository is shown next to the junction 
of the memory access connector and the hexagon representing 
the group to indicate that the connector involves a repository. If 
the node was a file or table, then a small file or table would be 
shown next to the junction of the connector and the hexagon. 

As with abstraction for nodes, there is a homogeneous 
case for connector abstraction. When there are two connectors 
involving nodes outside the system, and both connectors are 
the same type and direction, the new abstract connector is 
represented by a single arrow of the type. (Since a message 
connector can connect an arbitrary number of nodes, there is 
no concept of an incomplete message connector. Hence, there 
is no homogeneous abstraction for message connectors.) Fig. 7 
shows an example of homogeneous connector abstraction. In 
this example, the message connector, the tasks connected to 
it, and the streams are replaced by a stream. 

Fig. 8 shows two examples of heterogeneous abstraction for 
cminectors. The first is a connection that translates a stream 
into a file. The other shows that heterogeneous abstraction is 
not limited to binary connectors. In both cases, the connector 
subsystem outlined by the dashed polygon on the left is 
replaced by a composite connector on the right. The composite 
connector is treated as a single connector. 

111. FORMALIZATION 

This section presents a mathematical model of the example 
notation and types which will be used to define operations, 
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Fig. 8. Heterogeneous abstraction for connectors. 

one of which is pattern matching. We define several basic 
operations in this section. Pattern matching is deferred until 
the next section. The model is not limited to the types we have 
chosen, and may be augmented with other types, provided that 
the definitions of the operations are also augmented. 

This particular formalization is specific to our example lan- 
guage, although it can easily be extended to richer languages. 
It does not support any fixed arity connectors other than binary, 
and the arbitrary arity of the message connector requires 
some special handling. The main purpose of the formalization 
is to precisely define the operations interface , equivalence, 
and specialization. Any formalization that defines these three 
operations may be used in our pattem matching approach. 

Our model is based on set theory. Elements of the graph 
are represented using sets and relations. The primitives of the 
notation are represented using the following sets: 

N 
C 
M S  
V 

the set of nodes in the system; 
the set of connectors in the system; 
the set of message sites in the system; 
the set of variables in the system. 

The nodes are the tasks and memory elements of the 
system. The set of message sites is used to model the arbitrary 
arity of the message connectors. Message Sites link message 
connectors and the tasks they connect. 

Variable elements are used to handle partial systems. Vari- 
able nodes are used to model incomplete connections and 
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variable connectors represent expected connections. The set 
V identifies the variable elements of N and C. We define the 
tuple EL = ( N ,  C, M S ,  V) as the elements of the system. 

The elements of N ,  C, M S ,  and V are given types using 
the tuple Types = (Task, File , Repository, Tbl , Hetero, 
MetaMorph , Message, Stream , FileAcc, TblAcc , RepAcc, 
Proc , Prod, Invoke , Read, Write , Bidir, MRead , MWrite). 
The sets Task, File, Repository, Tbl, Hetero, and MetaMorph 
partition the set N .  The sets Message, Stream, FileAcc, TblAcc, 
RepAcc, Proc, Prod, and Invoke partition the set C. The set 
Read, Write, Bidir, MRead, and MWrite are used to provide 
additional attributes of the elements. The Zjpes tuple is used 
to refer to these sets as a group when discussing operations 
on systems. The examples of systems shown in this paper 
enumerate the nonempty sets explicitly. The unspecified sets 
are assumed to be empty and the Types tuple will be assumed 
to be the list of explicit and assumed sets. 

Four binary relations model the connections between ele- 
ments. These are the following: 

src C N x C 

dst C N x C 

has C N x MS 
msg G MS x C  

Nodes that are the source of 
binary connectors. 
Nodes that are the destination of 
binary connectors. 
Nodes that have message sites. 
Message sites associated with 
message connectors. 

The relations src and dst are used to model the source and 
destination of binary connections. In the example notation, the 
source of a connection is always a task. Since the notation may 
be changed to include more types, we use the more general 
set N as the domain of the src relation. 

The has and msg relations model message connections. The 
has relation associates message sites with tasks, and the msg 
relation associates the message sites with message connectors. 
We define the tuple Connections = (src, dst, has ,  msg) as the 
connections of the system. A system is then defined as the 
tuple System = (EL, Types, Connections ). 

Fig. 9 shows an example of a system and its model. The 
expected connectors are represented by variables. A variable 
connector is a member of the range of at most one of the src or 
dst relations. As mentioned previously, the source of binary 
connections is always a task, thus the tuple (BB2,BBA4) is 
part of the dst relation. 

A. Well-Formedness 

Restrictions on the sets and relations define well- 
formedness. A system is a well-formed system if and only 
if these restrictions hold for the model of the system. These 
restrictions fall into three categories. The first group describes 
subset restrictions between sets and domain restrictions for 
the relations. For example, only a member of the File subset 
of N may be related to the FileAcc subset of C by the dst 
relation. There are fourteen of this kind of restriction. 

The second category of restrictions, of which there are ten, 
limits the cardinality of the relations. As an example, only one 

BB3 

N = [ Al, BBl, 882, BB3 1 V = I BBA4, BBAS 1 
C = [ BBAl, BBA2, BBA3, BBA4, BBA5 1 Task = [ A1 ) 
RepAcc = [ BBAl, BBA2, BBA3, BBA4, BBAS ) Repository = 1 BBLBB2, 883 1 
Bidir = ( BBA1, BBA2, BBA3, BBA4 } Write = [ BBAS ) 
src = [ <Al,BBAl>, 4 1 ,  BBA2>, <Al, BBA3> 1 
dest = [ <BBl,BBAl>,<BB2,BBA2>, <BB2,BBA4>, <BW,BBAA3>, <BW,BBA5> 1 

Example translation of a subsystem Fig. 9. 

node of a system may be the source of a binary connector. 
The last category of restrictions are general restrictions that 

involve arbitrary relations between elements. One example is 
that V is a subset of N or C, but not both. This represents the 
restriction that a partial system is either a nodal subsystem or a 
connector subsystem (since we have no meaningful abstraction 
for a mixed subsystem). Another example of this kind is the 
restriction that all connector subsystems must have at least 
two variable nodes. There are four of these restrictions. The 
complete set of well-formedness restrictions is given in [4]. 

B. Interjiace and Equivalence 

We define several operations on the semantic model. The 
interface operation is the formal equivalent of the interface 
function described informally in the previous section. The 
interface of a complete system is always a single task. The 
interface of a nodal subsystem is a single node with the 
same expected connections. The type of the node is given 
by the abstraction rules for nodes. Similarly, the interface of 
a connector subsystem is a connection whose type is given 
by the abstraction rules for connectors given in the previous 
section. 

The interface operation produces a system with a new 
nonvariable node or connector and all of the variable elements 
of the argument system. The resulting system relations (src, 
dst, has, msg) contain only the entries involving the variable 
elements, with nonvariable elements replaced by the newly 
created nonvariable element. The formal definition of this 
function is provided in [4]. 

Fig. 10 gives the interface of the system shown in Fig. 9. 
The nonvariable elements of the system have been replaced 
by a single node, n l .  The variable elements remain the same, 
but are connected to the new node. 

The interface of a system is used to define system equiv- 
alence. System equivalence, in turn, is used to define pattem 
matching. A related concept, specialization, is also based on 
the interface of a system. System specialization is used to 
define subpattem matching. 

Two systems are equivalent if and only if they have the 
same interface. That is, two systems are equivalent if we can 
construct a bijection between their interfaces as follows: 
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N = [ n l )  
Repository = [ nl 1 
RepAcc = ( BBA1, BBA2, BBA3, BBA4, BBA5 1 
Bidir = I BBA4 

C = [ BBA4, BBAS 1 
V = [ BBA4, BBAS ) 

Fig. 11. Example pattern match. Write = [ BBA5 1 
dest = ( <nl,BBA4>, <nl,BBA5> 

Fig. IO. Interface of Fig. 9. 

the types of all the related elements are the same and, 
all instances of the connection relations (src, dst, has, 
msg) between elements of one interface hold between the 
related elements of the other interface. 

We use the form A = B if the system A is equivalent to 
the system B.  

A system A is a specialization of a system B if and only if 
there exists an injection from the element of the interface of 
A to the elements of the interface of B that preserves types 
and connection. We define generalization as the converse of 
specialization. That is, system B is a generalization of system 
A if and only if system A is a specialization of system B. 

This definition of equivalence and specialization relies on 
the syntactic definition of interface. If semantics are incor- 
porated into the notation, they may also be used to refine 
the definition of equivalence and specialization. This will 
also implicitly refine the pattem matching mechanism. The 
semantics incorporated into the refined definitions must be 
limited to the semantics of the types, not the semantics of 
individual elements. 

Iv. PATTERN MATCHING 

The definitions of the previous section form the basis of our 
pattern matching mechanism. We present pattern matching in 
three steps. The first defines simple pattern matching using 
only the rules of abstraction. The second step extends pattern 
matching with constructs similar to regular expressions in 
string languages. This step is defined in Section IV-A. The last 
step adds the equivalent of context free grammars to express 
recursive patterns. It is presented in Section IV-B. Section IV- 
C presents one possible way of evaluating the best match when 
more than one pattern matches a given system. 

Two definitions needed for simple pattern matching are 
minor systems and singular minor systems. System B is a minor 
system of system A if and only if its elements and relations 
are a subset of those of system A. A singular minor system 
is a minor system that contains a single nonvariable element. 
Heterogeneous connector subsystems are treated as a single 
element. 

A system is a simple pattern for another system (the target) 
if, and only if, the target system can be partitioned into a set 
of minor systems corresponding to the elements of the pattern. 
Thus, a system P is a simple pattern for a system Q if, and 
only if, P = Q and there exists an injection 4 from the set of 
singular minor systems of P to the set of minor systems of Q 
and an injection p from the message connectors of P to the 
message connectors of Q such as follows. 

For all +-related minor systems A of P and B of Q, A 

The range of 4 partitions Q. 
The range of 4 are connected systems. 
The &related minor systems of Q are connected in the 

The systems chosen to be the range of + must partition Q. 
That is, all elements of Q must be an element of one of the 
minor systems in the range of 4. Each of these minor systems 
of Q must also be connected, preventing the abstraction of 
several unrelated elements. For example, several repositories 
could not be grouped into a single repository unless some 
subsystem joining them was also included. 

The final restriction on the two injections is that the chosen 
minor systems of Q must be connected in the’same way 
as the singular minor systems of P. That is, if a connector 
subsystem and a nodal subsystem of P are joined (say a task 
and a stream), then the corresponding connector subsystem and 
nodal subsystem of Q must also be joined. The injection p is 
used to map message connectors in P to message connectors 
in Q since they may not be connector subsystems. 

Fig. 11 shows two systems, one of which is a pattern for 
the other. The pattern system is the system on the left and the 
matched system is the system on the right. The letters indicate 
the elements associated by the injection. The only nonsingular 
minor subsystem matched in the target system is formed by 
the two repositories and the task that connects them (h’). It is 
enclosed in dashed lines to identify the matched components. 
The bidirectional memory access indicated by g’ in the target 
system is not part of the subsystem h’ since it crosses the 
boundary. 

In practice, most systems will not be matched in their 
entirety by the taxonomy patterns. For example, the canonical 
compiler contains components that can be characterized as a 
pipe and filter system. It also has overlapping components 
that can be characterized as a shared memory system. Any 
useful method of characterizing system structures should be 
able to handle structures embedded within systems. We define 
a subpattern match as a matching of a pattern system to a 
system embedded within another system. Thus, we can view 
the compiler as either an instance of a pipe and filter system 
or of a shared memory system. The definition is identical 
to pattern match except that specialization is used instead of 
equivalence, and the range of the pattern match injection does 
not have to partition the target system. That is, not all elements 
of the target system must be matched. 

Although pattern and subpattern matching are useful, more 
expressive patterns are required. If, in the example in Fig. 1,  
a bidirectional memory access connection was added between 
the repository h’, and the task f’, the pattem would no longer 

E B. 

same way as the singular minor systems of P. 
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,* 0 

Fig. 12. Central repository pattem and an example matched system. 

match. There is no element in the pattern to correspond to 
the extra connection, and no way to repartition the target 
system to produce a match that includes the new connector. To 
handle this problem we augment the pattems with symbols that 
indicate families of patterns. The augmented pattern matches 
a system if any of the pattems generated from the augmented 
pattem match the system. There are two complimentary ap- 
proaches. The first, based on regular expressions uses simple 
altemation and repetition operators. The second is based on 
graph grammars [5] and is used to express more complex 
repetitive structures. 

A. Regular Expressions 

Fig. 12 shows the pattern for the central repository class 
of system architectures and a system matched by the pattern. 
The rectangle around the repository access connectors with 
dividing lines provides altemation. The "+" symbol is used to 
indicate one or more repetitions of a pattern element. In the 
example, the "+" next to the altemation means one or more 
memory access connections between the repository and a task. 

The operator has a higher precedence when applied to a 
node than to a connector. In the example, the "+" applied to 
the task is expanded before the "+" applied to the connection 
element. Therefore, the systems recognized by the pattem 
are systems composed of a single repository (or system that 
abstracts to a repository) and several tasks (or systems that 
abstract to tasks), and each task is connected to the repository 
by one or more memory access connectors. 

The regular expression operator binds to the closest element. 
When the operator is near the point where a connection joins 
to a node, the operator applies to the node. 

Fig. 13 gives the pattem for a distributed repository and 
an example of a system that is matched by the pattern. The 
difference between this pattern and the previous one is that 
the repository is also modified by the "+" repetition operator 
and the altemation for the memory access connectors is now 
modified by the "*" repetition operator. This pattem matches 
one or more repositories that are connected to one or more 
tasks. Not all pairs of repositories and tasks need be connected 
("*" means zero or more). 

Two other operators are provided, the '?" and "!" operators. 
As in regular expressions for strings, the "?" operator indicates 
an optional element. In all of the cases presented so far, an 
element of the system matches if there is a minor system with 
the same interface. The "!" operator restricts the match to 
be a singular minor system. This operator may be applied to 

Fig. 13. Distributed repository pattern and example matched system. 

2.++ ::= 

Fig. 14. Simple pipe and filter system without feedback 

connectors and to any grammatical construct. It may also be 
combined with the "+ ," "?," and "+" operators. 

These repetition operators provide parallel repetition in the 
patterns. That is, the repetition of elements connected to 
the same element or group of elements. Two examples of 
parallel repetition are multiple streams between two filters, 
and multiple transaction programs accessing a single database. 
Recursive repetition involves an element that will connect, in 
tum, to the elements generated by the pattem. An example 
is the pattem for a pipe and filter system. The next section 
describes a method to specify recursive pattems. 

B. Grammar Productions 

To handle recursive repetition, we extend the pattem mech- 
anism to provide the equivalent of context free grammars. 
This is done using a limited version of graph grammars [ 5 ] .  
The full power of unrestricted graph grammars is not required 
for specifying the patterns we are interested in. Unrestricted 
graph grammars provide arbitrary rewriting of graphs. We are 
interested only in the subset of graph grammars that provides 
syntactic recognition. 

Fig. 14 shows a pattem that matches simple pipe and filter 
systems with no feedback between the filters. The rounded 
rectangle is used to represent nonterminal nodes. A simple pipe 
and filter system without feedback is a task with two multiple 
stream connections, or a task connected by a multiple stream 
connection to a simple pipe and filter system without feedback. 

All rules have a single nonterminal element on the left 
hand side. The nonterminal has a context that consists of 
primitive elements of the notation. This context consists only 
of the primitive elements that may directly connect to the 
nonterminal element. The right hand side is an arbitrary system 
that may contain nonterminal elements. The interface of the 
right hand side must be identical to the context of the left 
hand side. 
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“I . .- 

Fig. 15. Pipe and filter system with feedback 

There may be more than one rule for a given nonterminal. 
and rules may have different contexts. Fig. 14 shows a short 
form for multiple rules with the same context. Each of the 
alternate right hand sides is separated by a vertical bar. 
Rules may only be applied if the context of the embedded 
nonterminal matches the context of the rule. 

When more than one element of the context is of the same 
type and has the same attributes then the context elements must 
be labeled. These labels are local to the rule and cannot be used 
to govern the application of subsequent rules to nonterminals 
embedded within the right hand side. All possible bindings 
of ambiguous context elements are tried when generating a 
pattern system. 

When a production is applied to a nonterminal node, only 
the ends of the connectors connected to the nonterminal node 
are changed (to the new nodes introduced by the production). 
The other ends of the connections remain connected to the 
same nodes. 

As with conventional grammars, more than one rule may 
be provided for a given nonterminal. The same nonterminal 
node may be defined for more than one context. However, 
only those productions which have the same context as the 
nonterminal node may be applied. 

Although the capabilities of the regular expression operators 
may be provided by the grammar mechanism, we believe that 
the regular expression operators provide a concise representa- 
tion of some structures. The grammar version of the structures 
would not be as clear. Instead, we show how they may be 
combined. 

The system matched by applying the “?,” “+,” or “*” 
operators to a nonterminal is equivalent to replicating the 
nonterminal before expanding it. That is, not all of the systems 
matched by the nonterminal must be matched by the same 
parse. 

The addition of repetition operators requires some changes 
to the rules governing the context of left and right hand 
sides of grammar productions. Context elements that have 
been modified with the regular expression operators may be 
combined by labeling them with the same label. That is, 
a single context element from the left hand side may be 
represented by more than one context element on the right- 
hand side subject to the following rules. 

n 

Fig. 16. Example pipe and filter system. 

Elements with the “*” operator may be split into multiple 
elements of the same type, each modified with the “*” 
operator. 
Elements with the “+” operator may be split into multiple 
elements of the same type, each modified with the “+” 
operator. 

Two cases must be explained. The first is matching the 
context of the left- and right-hand sides. This is done by 
combining those elements on the right hand side with the 
same label (subject to the rules above) and checking to make 
sure that the contexts match. The second case is determining 
the contexts of embedded nonterminals to decide which rule 
to apply. The context of the embedded symbols may also be 
labeled and a similar procedure is followed. The elements with 
the same labels are merged and the rule with the same context 
is selected. Fig. 15 shows an example. 

The figure shows the pattern for a pipe and filter system with 
feedback. To do this, the system generated by a nonterminal 
must be ablz to communicate with all of the filters generated 
by previous grammar rules. Examples of both types of context 
merges are given in the fourth rule. The context of the left hand 
and right hand sides match since the two streams modified with 
the ‘‘ *” operator are both given the label “b.” The second set 
of rules is used for subsequent grammar productions of the 
nested nonterminal, because both streams modified by the ‘‘* 
” operator have the label “b.” 

C. Strength of Pattem Match 

Some systems may be matched by more than one pattern. 
For example, the pattern given in Fig. 14 only matches a 
pipe and filter system composed of a single sequence of 
tasks without feedback. If we modify the pattern, adding “+” 
operators to the tasks, we get a pattern that matches pipe and 
filter systems that are comprised of stages of tasks. Fig. 16 
shows an example system matched by the new pattern. This 
pattern also matches the same systems matched by the pattern 
in Fig. 14. Thus, it is advantageous to have some metric of 
the strength of the match. The ideal definition of the strongest 
match is the pattem that matches the fewest systems, although 
it still might match an infinite number of systems. In this 
section we define an approximation. 

Suppose we have two pattern systems that match a given 
target system. We start by defining a partial order between 
corresponding elements of the two patterns that match the 
same minor system of the target system. The partial order 
is defined based on how the elements have been modified 
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* 5 +  * 2 !* !* 5 !+ 
+ 5 ?  ? I !? !+ 5 !? 
+ 5 -  - 5 !- !+ 5 !- 
?I” * s o  

Fig. 15. Partial order for regular expressions. 

by the regular expression operators, and the “!” operator. This 
relation, for which we use the ‘‘I” symbol, is given in Fig. 17. 
For elements a of one pattern and b of another, a 5 b, if b is a 
better match than a. The symbol ‘‘-” is used to represent an 
unmodified element and the symbol “ O” is used to represent 
an element missing from the pattern. Since a partial order is 
transitive and reflexive, the transitive and reflexive closures 
of Fig. 17 are also defined. We extend the partial order from 
individual elements of the two patterns to the entire patterns in 
the obvious way. One pattern match is stronger than the other 
if the partial order holds for all elements of the two patterns. 

V. A TAXONOMY OF SYSTEM ARCHITECTURES 

This section describes a small taxonomy of software archi- 
tectures based on our example architectural language. Since 
it is based on the example notation, it is limited to syntactic 
differences in the topology and types of system descriptions. 
Even so, it provides a variety of structure classes, and can 
represent many of the types of architecture described in the 
literature. The purpose of such a taxonomy is to provide a 
syllabus of useful system structures. The next step, discussed 
in the section on future work, is to evaluate the taxonomy 
against real systems and add information on the applicability 
of each class to different types of problems. 

Each class of any taxonomy developed using our approach 
is described as a set of patterns. A given system is a member of 
the class if it is matched by one of the pattems in the set. The 
classes of our taxonomy are derived from two sources, Garlan 
and Shaws paper on higher level abstractions [7] and the book 
Coordinated Systems [6]. The taxonomy currently contains six 
classes, two of which have several subclasses. Some of these 
patterns have already been shown in figures. Fig. 18 gives an 
outline of the taxonomy. 

The pipe and filter system with nonoverlapping feedback 
is similar to that with general feedback, but the feedback 
connectors may not overlap. They may be between successive 
sets of the filters, or nested. The bidirectional pipe and 
filter system is similar to the unidirectional case without 
feedback, but the streams may be bidirectional, or they may 
be unidirectional in either direction. The message network is 
a set of tasks that are connected by one or more message 
connectors. There are no restrictions on the number of message 
connectors, or the number of tasks. 

The pattern for the layered system is shown in Fig. 19. It 
consists of two productions and is similar to the simple pipe 
and filter system. The difference is that the procedure call 
communication primitive is used, and the nonterminal node is 
replicated. The layered random repository pattern is similar to 

Class Notes 
Pipe and Filter 

Unidirectional 
Without Feedback 

Simple Fig. 14 
With Feedback Fig. 15 

Non-overlapping Feedback 
Bidirectional 

Simple 
Random Repository 

Central 
Layered 
Distributed 

Message Network 
Layered 
Knowledge Interpreter 
Client-Server 

Fig, 18. Taxonomy outline. 

Fig. 12 

Fig. 13 

Fig. 19 
Fig. 11, add ’+’ to connectors 
Fig. 12, Task instead of Repository 

+ 
Fig. 19. Layered system pattern 

the pipe and filter pattern. It may be described as a sequence 
of repositories where each repository is connected to the next 
by one or more tasks and memory access connections. 

The client server pattern is similar to the central repository 
pattern, but the central entity is a task instead of a repository. 
The distinction between these two structures is impossible 
without the types provided by our notation or behavioral 
information for the central component. 

VI. CONCLUSIONS AND FUTURE WORK 

We have presented a formal, syntactic theory of software 
architecture based on typed nodes and connections. There 
are several reasons we believe this to be an appropriate 
representation for system structure. The first is that it uses a 
syntactic technique analogous to that used to express program- 
ming language structure: regular expressions and context free 
grammars. It is essentially a diagrammatic form of extended 
BNF notation, and handling of attributes and semantics can 
be added using techniques analogous to attribute grammars 
and denotational semantics for programming languages. The 
second advantage of the notation is that it is easily extensible 
to include new primitive element types. 

We have shown how types and abstraction can be used 
to represent system structure and to categorize architectural 
styles. Even though the technique we use is syntactic, the 
types allow us to model the intended semantic roles that are 
important to the structural architecture of the system. Our 
technique works with any graph-based notation that uses types 
in this way. This paper presented an example notation that 
illustrates some of advantages of types, and a taxonomy based 
on the notation and our pattern matching technique. Practical 
applications of our approach would likely use a richer set of 
types, and with a more precise characterization of the semantic 
properties each type represents. 

I 
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This paper makes two contributions to the field of software 
architecture. The first is the pattern matching mechanism, 
which provides a general means of describing and recognizing 
classes of software architecture. The other is an initial nota- 
tidn and taxonomy that illustrates these characteristics while 
remaining open to the addition of other language features. 

A taxonomy based on a more general architectural language 
that includes semantics would provide a means of comparing 
system structure classes, of classifying the structure of existing 
systems, and of understanding software architecture in general. 
The taxonomy can provide a syllabus that may be used to 
design new systems. Instead of emphasizing a single structure 
class, designers may choose to use different structures in 
different parts of a system. The classification of the structure 
in existing systems may assist in analyzing those systems for 
the purpose of software maintenance. But most importantly, 
a taxonomy of system structures may provide a better un- 
derstanding of the roles of components and their interaction 
in much the same way that current data structure taxonomies 
enhance the understanding of procedural programs. We believe 
our classification framework to be a first step toward this goal. 

A. Future Work 

We envision several ways in which this research may be 
extended. Among them are extending the number and scope 
of element types, attributes, modeling dynamic systems, and 
providing a reasoning framework. 

B. A Richer Set of Types 

While the types we have used to motivate our pattem mech- 
anism are capable of describing the connection architecture of 
a range of systems described in the literature, the notation is 
by no means complete. In addition, the interpretation given for 
each of the types was incomplete and informal. For the purpose 
of our pattem matching mechanism, the existence of separate 
types is more important than the particular interpretation of the 
types. Two obvious extensions to the research are to provide 
a formal definition for each type, and to add new types of 
nodes and connections. The new definitions of the types would 
restrict the interpretation of the type, specifying in more detail 
the properties common to instances of the types. New types 
of elements may be added as distinct types, or as subtypes of 
the existing types. 

If the new types are added as distinct types, the taxonomy 
must be expanded to use the new types. This may involve 
new structure classes, or the additional patterns for existing 
structure classes to include the new types. With more types, 
the interpretation of the existing types (i.e., mapping to real 
world design or implementation artifacts) may be narrowed. 
The existing types may be completely replaced by a new set of 
types, particularly if the application domain provides its own 
element types. 

If the new types are added as subtypes of existing types, then 
the taxonomy needs no modification for the existing classes. 
Subclasses of the taxonomy may be refined to use the subtypes. 
For example, a subtype of the central repository structure 
class may be refined to use a database subtype of repository. 

While the properties of each subtype must be consistent 
with the properties of the parent type, the subtype will add 
additional constraints on the properties of its instances. Thus, 
the subtypes will provide stricter interpretations of the parent 
types. 

C. Attributes 

Adding attributes to the elements of the notation may be 
useful in specifying design or implementation information. The 
attributes can be treated as orthogonal to adding new types, 
and may provide a means of specifying stricter interpretations. 
Examples of attributes are the buffer size of a stream or 
the locking protocol for a repository that represents shared 
memory. If the attributes are incorporated into the definitions 
of interface, equality and specialization, then they can also be 
used to refine the taxonomy. 

D. Dynamic Architectures 

We view the dynamic changes to the structure of a system 
as orthogonal to the structure of the system. In this way, 
we may model systems whose dynamic behavior changes its 
classification within the taxonomy. 

A possible approach is to model each singular minor system 
that can change its interface as a finite state machine. Each 
interface configuration is a state, and the allowable changes 
between configurations determine the transitions of the state 
machine. The model of a Unix shell would have two states. 
The first is a task that reads from a stream and writes to 
two streams. The second state is a task with the same stream 
characteristics but also invoking another task. The transition 
function simply moves between the two states. 

This simple model has some advantages. We can extend the 
power of the model by substituting push down automata or 
Turing machines for the finite state machines. Another way is 
to provide a means of specifying the events that trigger the 
transitions. Systems can be modeled as compositions of these 
automata into a single automaton. 

E. A Framework for  Reasoning 

There are two ways in which the notation may be used as a 
framework for reasoning about systems. The first is to use it as 
a framework for specifying the behavior of the systems. The 
notation describes the structure of the system and a notation 
such as CCS [9] or CSP [SI is used to specify the behavior 
of elements or groups of elements. For example, a repository 
may be modeled as a process in these notations, and locking 
mechanisms and protocols could be defined. Another model 
that may be used is provided by Allen and Garlan [3]. This 
method specifies connections as a set of roles and glue logic 
that specifies the relationship between the roles. Components 
have ports that may be associated with roles of connectors. 
CSP is used to specify the ports, roles, and glue logic. A 
slightly different approach taken by Abowd, Allen, and Garlan 
[ l ]  uses the Z language [ l l ]  to specify the ports, roles, and 
glue logic. 

The other way the notation may be used as a framework for 
reasoning about systems is the attribute mechanism discussed 
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Fig. 20. Prolog representation of Fig. 9. 

previously. Since this information can be incorporated into 
the equivalence and specialization relations, we can use these 
relations to define equivalence preserving transformations. 
These transformations can be used to reason about dynamics, 
or about relations between different classes of system structure. 
Another important application of the extended notation is a 
maintenance theory for systems. 

Garlan and Shaw 171 show an example of a system with dif- 
ferent architectural interpretations. The system is the Hearsay- 
I1 speech understanding system. By changing the interpretation 
of different components, the system may be viewed as a 
blackboard model (Central Repository in our taxonomy) or 
an interpreter (Knowledge Interpreter in our taxonomy). In 
our current notation, this requires a change in the element 
types to reflect the new interpretation. However, with the 
addition of semantic interpretations of the symbols, and some 
set of semantic preserving transformations, the types of views 
advocated by Garlan and Shaw may be possible. 

F. Prototype Implementation 

A prototype implementation of the pattern matching algo- 
rithm has been built using Prolog. The system is represented 
as a predicate named system with four parameters: the name 
of the system, and three lists representing the three elements 
of the System tuple from Section 111. Tuples and sets are 
represented as lists. The relations are lists of ordered pairs, 
each of which is represented as a two element list. Fig. 20 
shows an example Prolog encoding of the system from Fig. 9. 
The system name isfig9. The “76” characters indicate the start 
of Prolog comments, which are terminated by the end of a line. 

This representation allows more than one system to be 
loaded in the database at a time. It also permits temporary 

systems to be generated and held in variables without adding 
them to the Prolog factbase. For convenience, rules are pro- 
vided for each of the element type subsets. These rules take 
a system as one argument and a Prolog symbol as the other 
argument and are satisfied if the symbol is part of the relation. 
As an example, the predicate task(Sys,aZ) is satisfied if Sys is 
bound to the system in Fig. 20. 

We have predicates that check that the well-formedness of 
a system, compute the interface of a system, and evaluate 
equivalence and specialization. These predicates are used to 
implement simple pattern matching and subpattern matching. 
We have an interface for the visual notation which is able to 
interact with the Prolog engine. 

G. Limitations of the Technique 

It is currently not known if our pattern mechanism is 
sufficient to describe all of the interesting structure classes. 
It does, however, handle a reasonable number of them. We 
are a little concerned about controlling the complexity of 
the descriptions. The graph grammars necessary to describe 
some involved structures may not be easy to understand. This 
may simply be a consequence of a complex structure and any 
representation of the structure would be just as complex. 

The technique we have described is entirely syntactic. 
However, the syntax approach uses the types of the elements to 
abstract semantics common to instances of the type. We have 
also shown several ways in which more semantic information 
may be incorporated into our pattern matching approach. 
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