
302 IEEE TRANSACTIONS ON SOFIWARE ENGINEER", VOL. 21, NO. 4, APRIL 1995

A Syntactic Theory of Software Architecture
Thomas R. Dean and James R. Cordy

Abstract- In this paper we introduce a general, extensible
diagrammatic syntax for expressing software architectures based
on typed nodes and connections and formalized using set theory.
The syntax provides a notion of abstraction corresponding to the
concept of a subsystem, and exploits this notion in a general mech-
anism for pattern matching over architectures. We demonstrate
these ideas using a small example architecture language with a
limited number of types of nodes and connectors, and a small
taxonomy of architectures characterized as sets of patterns in the
language.

Index Terms- Software architecture, software structure, pat-
tern matching.

I. INTRODUCTION

ARLAN AND SHAW 171, [lo] argue that larger sys-
tems require a higher level of abstraction. Larger and

more complex systems are not easily handled using current
techniques. They claim that simple identification of system
structures and types is not sufficient; in order to facilitate
meaningful analysis and comparison, they must be expressed
using a uniform notation. Our work provides a first, syntactic
level approach to addressing this software architecture level.

The motivation for our work is to provide a formal syntax
that will serve as a framework within which we can discuss
other issues, such as component and system behavior, and
to compare and contrast different architectural styles. We use
a diagrammatic representation in order to be consistent with
traditional practice.

Our syntax must be useful at several levels. The first is
to expose the architectural structure of individual systems. At
this level it provides a foundation on which the semantics
of individual components and the system as a whole may be
based. To be general, it is important that the syntax should not
bias the expression of a system to any particular paradigm of
system organization.

At the second level, the framework must abstract details of
particular components, and provide a means of categorizing
architectural paradigms. Since our framework is syntactic, the
architectural paradigms we classify are syntactic paradigms.
To serve as a framework for an architectural theory, the
mechanism must be open. That is, it must provide a means
of including constraints on system classification based on
semantics introduced at the first level.

Manuscript received February 1994; revised November 1994. Recom-
mended by D. Perry and D. Garlan. This work was supported by Natural
Science and Engineering Research Council of Canada (NSERC) and the
Information Technology Research Centre of Ontario (ITRC).

The authors are with the Department of Computing and Information
Science, Queen's University at Kingston, Kingston K7L 3N6, Canada.

IEEE Log Number 9419575.

At the third level, the framework must provide some means
of expressing architectural paradigms. It is not enough simply
to be able to state that a given system description is a
member of a particular architectural class, it must also be
possible to describe each paradigm in a manner that allows
new systems to be instantiated from the paradigm. We believe
that the approach presented in this paper provides a syntactic
framework that works at all of these levels.

A. Outline

We approach the problem in three steps. We begin by
identifying those Characteristics of an architectural syntax
necessary to our approach and present a simple diagrammatic
language that illustrates these characteristics in an informal
manner in Section 11. The example language is intentionally
incomplete-it lacks semantics, and features have been kept
to a minimum in order to focus the readers attention on the
approach rather than the details. Section I11 formalizes the
example notation and defines several operations, including
interface, abstraction and equivalence.

The second step is to provide a syntactic pattern matching
mechanism that exploits the characteristics of the notation.
The pattem mechanism is not tied to the example language,
but will work with any architectural language with similar
characteristics. It can be easily extended to take semantics into
account. The pattern mechanism is described in Section IV.

The third step is to show how the pattern mechanism can
be used to construct a taxonomy of architectural styles. For
any given architectural language, the taxonomy will reflect
those elements that can be distinguished in the language. Since
only the syntax of the language is described, the taxonomy is
limited to the syntactic structures that may be distinguished
by the language. We show an example taxonomy expressed
as patterns of our simple example language. Surprisingly,
even with the limited syntax of our example language, a rich
taxonomy can be built encompassing most of the common
architectural paradigms. The taxonomy is described in Section
V.

Section VI provides some conclusions and directions for
future research.

11. ARCHITECTURAL SYNTAX AND AN EXAMPLE NOTATION
The essential characteristics of an architectural syntax upon

which our method depends are: the use of syntactic types to
characterize the major kinds of components and connections
in a system; a structural definition for interfaces of systems;
and a notion of equivalence based on the structural interfaces.
These characteristics form the basis of the pattem matching
mechanism which is at the foundation of our work.

0098-5589/95$04.00 0 1995 IEEE

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE 303

Source Semantic Code Object
eode Analyzer Generator Code

i?--o-ctpo \ / f
\ I ’

- symbol Table

Fig. 1. Canonical compiler structure.

This section describes types, interfaces and abstraction in
an informal manner through the introduction of an example
architecture language. The notation is formalized in the next
section, where equivalence is also defined.

A. Types

The pattern mechanism relies on the use of syntactic types
to distinguish between the elements of a system. Types abstract
some aspect of a component or connections intended function
or behavior in much the same way as data types abstract
function and behavior in programming languages. Types may
also impose syntactic constraints on the permissible relations
between elements of the system. For the purposes of under-
standing system structure paradigms, we are interested only in
the form of the system, not in its function.

The choice of types in the example language introduced
below is intentionally limited. This was done to emphasize
the method rather than the particular types chosen. Other
realizations of our approach may have more types of elements,
either as separate types, or as subtypes of the existing element
types. These alternate notations may also provide stricter
interpretations of the types. That is, the semantics of the new
types may impose more restrictions on the properties common
to instances of the types.

B. An Example Architecture Language

The syntax of our example language is based on typed,
directed multigraphs. A typed, directed multigraph provides
typed nodes and typed edges and permits more than one edge
of a given type between nodes. We extend the multigraph
to allow edges with arbitrary arity: these may connect any
number of nodes.

We introduce our example language using example systems
that motivate the choice of the types. Fig. 1 shows our
architectural representation of the canonical compiler structure
typically used in undergraduate compiler courses. It is not
a complete representation of a real compiler since the error
stream is not represented, nor are multiple input files.

Rectangles represent memory elements of the system. Sim-
ple rectangles are Files. Files are malleable data repositories
that are intended to be accessed sequentially. The symbol com-
posed of nested rectangles is a Random Access Repository-or
simply, Repository. The repository type models memories
that may be modified and accessed at random (e.g., shared
memory and databases). In the example, it models the symbol
table that is shared between the parser, semantic analyzer and
code generator. Circles represent Tasks, which are the active

Fig. 2. Possible shell characterization

components of the system. At present, tasks are the only active
component type.

The types of the connections are indicated by the graphi-
cal characteristics of the arrows. Fig. 1 shows two types of
connectors, Streams and Memory Access Connectors. Streams
are represented as solid arrows and are binary connections
between tasks. They represent the direct exchange of data
between tasks and may be unidirectional or bidirectional. As
with all of the connectors, the implementation or the protocol
is not represented. The stream may be implemented over
a network, and the protocol may involve message passing.
Our notation only shows the type of the connection between
the two tasks. In the example, all of the streams are uni-
directional. The arrows with short dashes represent memory
access connections. They are binary connections between a
task and a memory component. As with streams, they may be
unidirectional or bidirectional.

Fig. 2 shows the possible characterization of a Unix shell
creating a sed (stream editor) process. The task in‘the upper
center of the diagram represents the shell. It has a single
read stream and two write streams to the task that represents
the terminal driver. The two write streams are distinct and
represent sdout and stderr.

The dotted arrow between the shell task and the sed task is
an invocation connector. It represents one process starting an-
other process. This connection and the production connection
are used to model dynamic changes to the system structure.
The production connection models the creating of a task by
another and is represented by a curved arrow. An example
of production is the link phase of a compiler, or a task that
produces another custom task for a problem.

The rectangle with the grid in Fig. 2 represents a ruble.
Tables are intended to model long term data that undergoes few
if any changes, such as static system data. The name “table”
is not intended to imply any particular intemal structure or
format. For example, the table in Fig. 2 represents the script
file that contains the edit commands for the stream editor.

Fig. 3 shows a characterization of several tasks commu-
nicating over a network. The arrows with the double heads
are procedure connections. These represent the connections in
layered systems. In the example, the two tasks at the bottom of
the figure represent the kernel layer. The other tasks represent
tasks using the kemel layer to communicate over the network.

The network is represented by a message connector, de-
picted as a line with two double bodied arrows connecting the
tasks to the line. The message connector is the one type in

304 IEEE TRANSACTIONS ON SOFTWARE. ENGINEERING, VOL. 21, NO. 4, APRIL 1995

connection is an indication that a connector of that type may be
used to connect the partial system to other systems. Expected--
connections are shown in gray. A partial system is one that
contains incomplete connections or expected connections.

Expected connections of a partial system may be thought
of as variable connections. That is, they are place holders that
may be bound to a connector to incorporate the subsystem
into another system. Incomplete connectors may be thought
of as connecting one or more variable nodes. An incomplete
connector may be used to connect two or more partial systems
by binding the expected connections of the systems to the
incomplete connector, and binding the variable nodes of the

Fig. 3. Procedure and message connectors.

Node Types Edge Types

___) 0 Task Stream

b Memory

f 4 Message

- -
4-* Access Table

-
Random 101 Access - Procedure

U Repository - - - -
n -b Invocation I 1 File Production

Fig. 4. Summary of notation symbols.

our example types that may connect an arbitrary number of
tasks. Each task may have one or more read and write sites
on the connector, represented by the double bodied mows. In
the example, the tasks on the left may only send data to the
tasks on the right, since the kemel process on the left has only
a write site on the message connection.

As with all connectors, the message connector is not re-
stricted to networks. All of the tasks may be on the same
machine. The message connection models a software structure
where a task may use a single connection to send information
to one or more other tasks, either singly, or as a group. The
purpose of the message connector in our example notation is
to show that architectural languages should not be restricted to
binary, or even fixed arity connectors. Architectural languages
should allow the representation of a wide variety of structures,
and not limit the user to a particular set of paradigms.

Fig. 4 provides a summary of the symbol types used in our
simple example architecture language.

C. Partial Systems

If we are to be able to analyze larger system architectures, it
must be possible to describe the parts of a system separately.
One such part of a system is an incomplete connection. An
incomplete connection is a connection that is part of a system,
but is missing a node. An example is a memory access
connector connected to a task, but not connected to a memory
node. Since a message connector may connect an arbitrary
number of nodes, it can not be an incomplete connection.
It may, however, be an expected connection. An expected

incomplete connector to nodes ofthe subsystems.
Although any partial system could be described, our notation

distinguishes two types of partial systems: connector subsys-
tems, which fulfill the role of connectors and nodal subsystems,
which play the role of nodes. The two types of partial systems
correspond to the two types of abstraction provided by the
notation, which are described next.

D. System Interface and Abstraction

Individual elements of a given system may represent entire
systems. This idea is not new and has been used in more than
one approach including that of Abowd, Allen, and Garlan [l],
[2]. An important nontraditional aspect of our notation is that
it supports encapsulation of subsystems as connectors as well
as components.

The concepts of interface and abstraction are tightly coupled
in our approach. The interface of an element and the subsystem
it represents (or abstracts) must match. Although this idea
not new, it forms one of the cornerstones of our pattern
matching mechanism. It also provides the means to incorporate
semantic information into pattern matching. Pattem matching
is explained in Section IV.

Our interface function transforms a partial system into the
minimum system that may be used in the same way as the
original system. In our example notation we use a simple
rule: when a single primitive can replace a partial system, we
use the symbol for that primitive to represent the abstraction
of that subsystem. This special case is called homogeneous
abstraction. The general case, heterogeneous abstraction, is
handled separately. We discuss both these types of abstraction
for both nodal and connector subsystems.

E. Homogeneous and Heterogeneous Abstraction

When the only nodes inside an abstracted subsystem that
have connections outside the group are of the same type,
the abstraction is said to be homogeneous, and the symbol
used for the group is the symbol of the type. Fig. 5 shows
an example use of homogeneous abstraction to abstract a
task and table subsystem into a task abstraction. The figure
represents a possible characterization of the lexer phase of
a canonical compiler, where the table is used to dnve some
skeleton algorithm.

For heterogeneous abstraction, a group of nodes and the
connections between the nodes is replaced by a single node, the
type of which is heterogeneous node. The new node assumes

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE

I f I

Fig. 5. Homogeneous abstraction for nodes

-0
Fig. 6. Heterogeneous abstraction for nodes.

-0

Fig. 7. Homogeneous abstraction for connectors.

all of the external connections of the group and preserves the
types of the connections. The symbol for heterogeneous nodes
is the hexagon. Fig. 6 shows an example of heterogeneous
abstraction. Several memory nodes and a task are abstracted.
The small diagram of a repository is shown next to the junction
of the memory access connector and the hexagon representing
the group to indicate that the connector involves a repository. If
the node was a file or table, then a small file or table would be
shown next to the junction of the connector and the hexagon.

As with abstraction for nodes, there is a homogeneous
case for connector abstraction. When there are two connectors
involving nodes outside the system, and both connectors are
the same type and direction, the new abstract connector is
represented by a single arrow of the type. (Since a message
connector can connect an arbitrary number of nodes, there is
no concept of an incomplete message connector. Hence, there
is no homogeneous abstraction for message connectors.) Fig. 7
shows an example of homogeneous connector abstraction. In
this example, the message connector, the tasks connected to
it, and the streams are replaced by a stream.

Fig. 8 shows two examples of heterogeneous abstraction for
cminectors. The first is a connection that translates a stream
into a file. The other shows that heterogeneous abstraction is
not limited to binary connectors. In both cases, the connector
subsystem outlined by the dashed polygon on the left is
replaced by a composite connector on the right. The composite
connector is treated as a single connector.

111. FORMALIZATION

This section presents a mathematical model of the example
notation and types which will be used to define operations,

305

d
Fig. 8. Heterogeneous abstraction for connectors.

one of which is pattern matching. We define several basic
operations in this section. Pattern matching is deferred until
the next section. The model is not limited to the types we have
chosen, and may be augmented with other types, provided that
the definitions of the operations are also augmented.

This particular formalization is specific to our example lan-
guage, although it can easily be extended to richer languages.
It does not support any fixed arity connectors other than binary,
and the arbitrary arity of the message connector requires
some special handling. The main purpose of the formalization
is to precisely define the operations interface , equivalence,
and specialization. Any formalization that defines these three
operations may be used in our pattem matching approach.

Our model is based on set theory. Elements of the graph
are represented using sets and relations. The primitives of the
notation are represented using the following sets:

N
C
M S
V

the set of nodes in the system;
the set of connectors in the system;
the set of message sites in the system;
the set of variables in the system.

The nodes are the tasks and memory elements of the
system. The set of message sites is used to model the arbitrary
arity of the message connectors. Message Sites link message
connectors and the tasks they connect.

Variable elements are used to handle partial systems. Vari-
able nodes are used to model incomplete connections and

306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 4, APRIL 1995

variable connectors represent expected connections. The set
V identifies the variable elements of N and C. We define the
tuple EL = (N , C, M S , V) as the elements of the system.

The elements of N , C, M S , and V are given types using
the tuple Types = (Task, File , Repository, Tbl , Hetero,
MetaMorph , Message, Stream , FileAcc, TblAcc , RepAcc,
Proc , Prod, Invoke , Read, Write , Bidir, MRead , MWrite).
The sets Task, File, Repository, Tbl, Hetero, and MetaMorph
partition the set N . The sets Message, Stream, FileAcc, TblAcc,
RepAcc, Proc, Prod, and Invoke partition the set C. The set
Read, Write, Bidir, MRead, and MWrite are used to provide
additional attributes of the elements. The Zjpes tuple is used
to refer to these sets as a group when discussing operations
on systems. The examples of systems shown in this paper
enumerate the nonempty sets explicitly. The unspecified sets
are assumed to be empty and the Types tuple will be assumed
to be the list of explicit and assumed sets.

Four binary relations model the connections between ele-
ments. These are the following:

src C N x C

dst C N x C

has C N x MS
msg G MS x C

Nodes that are the source of
binary connectors.
Nodes that are the destination of
binary connectors.
Nodes that have message sites.
Message sites associated with
message connectors.

The relations src and dst are used to model the source and
destination of binary connections. In the example notation, the
source of a connection is always a task. Since the notation may
be changed to include more types, we use the more general
set N as the domain of the src relation.

The has and msg relations model message connections. The
has relation associates message sites with tasks, and the msg
relation associates the message sites with message connectors.
We define the tuple Connections = (src, dst, has , msg) as the
connections of the system. A system is then defined as the
tuple System = (EL, Types, Connections).

Fig. 9 shows an example of a system and its model. The
expected connectors are represented by variables. A variable
connector is a member of the range of at most one of the src or
dst relations. As mentioned previously, the source of binary
connections is always a task, thus the tuple (BB2,BBA4) is
part of the dst relation.

A. Well-Formedness

Restrictions on the sets and relations define well-
formedness. A system is a well-formed system if and only
if these restrictions hold for the model of the system. These
restrictions fall into three categories. The first group describes
subset restrictions between sets and domain restrictions for
the relations. For example, only a member of the File subset
of N may be related to the FileAcc subset of C by the dst
relation. There are fourteen of this kind of restriction.

The second category of restrictions, of which there are ten,
limits the cardinality of the relations. As an example, only one

BB3

N = [Al, BBl, 882, BB3 1 V = I BBA4, BBAS 1
C = [BBAl, BBA2, BBA3, BBA4, BBA5 1 Task = [A1)
RepAcc = [BBAl, BBA2, BBA3, BBA4, BBAS) Repository = 1 BBLBB2, 883 1
Bidir = (BBA1, BBA2, BBA3, BBA4 } Write = [BBAS)
src = [<Al,BBAl>, 4 1 , BBA2>, <Al, BBA3> 1
dest = [<BBl,BBAl>,<BB2,BBA2>, <BB2,BBA4>, <BW,BBAA3>, <BW,BBA5> 1

Example translation of a subsystem Fig. 9.

node of a system may be the source of a binary connector.
The last category of restrictions are general restrictions that

involve arbitrary relations between elements. One example is
that V is a subset of N or C, but not both. This represents the
restriction that a partial system is either a nodal subsystem or a
connector subsystem (since we have no meaningful abstraction
for a mixed subsystem). Another example of this kind is the
restriction that all connector subsystems must have at least
two variable nodes. There are four of these restrictions. The
complete set of well-formedness restrictions is given in [4].

B. Interjiace and Equivalence

We define several operations on the semantic model. The
interface operation is the formal equivalent of the interface
function described informally in the previous section. The
interface of a complete system is always a single task. The
interface of a nodal subsystem is a single node with the
same expected connections. The type of the node is given
by the abstraction rules for nodes. Similarly, the interface of
a connector subsystem is a connection whose type is given
by the abstraction rules for connectors given in the previous
section.

The interface operation produces a system with a new
nonvariable node or connector and all of the variable elements
of the argument system. The resulting system relations (src,
dst, has, msg) contain only the entries involving the variable
elements, with nonvariable elements replaced by the newly
created nonvariable element. The formal definition of this
function is provided in [4].

Fig. 10 gives the interface of the system shown in Fig. 9.
The nonvariable elements of the system have been replaced
by a single node, n l . The variable elements remain the same,
but are connected to the new node.

The interface of a system is used to define system equiv-
alence. System equivalence, in turn, is used to define pattem
matching. A related concept, specialization, is also based on
the interface of a system. System specialization is used to
define subpattem matching.

Two systems are equivalent if and only if they have the
same interface. That is, two systems are equivalent if we can
construct a bijection between their interfaces as follows:

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE 307

N = [n l)
Repository = [nl 1
RepAcc = (BBA1, BBA2, BBA3, BBA4, BBA5 1
Bidir = I BBA4

C = [BBA4, BBAS 1
V = [BBA4, BBAS)

Fig. 11. Example pattern match. Write = [BBA5 1
dest = (<nl,BBA4>, <nl,BBA5>

Fig. IO. Interface of Fig. 9.

the types of all the related elements are the same and,
all instances of the connection relations (src, dst, has,
msg) between elements of one interface hold between the
related elements of the other interface.

We use the form A = B if the system A is equivalent to
the system B.

A system A is a specialization of a system B if and only if
there exists an injection from the element of the interface of
A to the elements of the interface of B that preserves types
and connection. We define generalization as the converse of
specialization. That is, system B is a generalization of system
A if and only if system A is a specialization of system B.

This definition of equivalence and specialization relies on
the syntactic definition of interface. If semantics are incor-
porated into the notation, they may also be used to refine
the definition of equivalence and specialization. This will
also implicitly refine the pattem matching mechanism. The
semantics incorporated into the refined definitions must be
limited to the semantics of the types, not the semantics of
individual elements.

Iv. PATTERN MATCHING

The definitions of the previous section form the basis of our
pattern matching mechanism. We present pattern matching in
three steps. The first defines simple pattern matching using
only the rules of abstraction. The second step extends pattern
matching with constructs similar to regular expressions in
string languages. This step is defined in Section IV-A. The last
step adds the equivalent of context free grammars to express
recursive patterns. It is presented in Section IV-B. Section IV-
C presents one possible way of evaluating the best match when
more than one pattern matches a given system.

Two definitions needed for simple pattern matching are
minor systems and singular minor systems. System B is a minor
system of system A if and only if its elements and relations
are a subset of those of system A. A singular minor system
is a minor system that contains a single nonvariable element.
Heterogeneous connector subsystems are treated as a single
element.

A system is a simple pattern for another system (the target)
if, and only if, the target system can be partitioned into a set
of minor systems corresponding to the elements of the pattern.
Thus, a system P is a simple pattern for a system Q if, and
only if, P = Q and there exists an injection 4 from the set of
singular minor systems of P to the set of minor systems of Q
and an injection p from the message connectors of P to the
message connectors of Q such as follows.

For all +-related minor systems A of P and B of Q, A

The range of 4 partitions Q.
The range of 4 are connected systems.
The &related minor systems of Q are connected in the

The systems chosen to be the range of + must partition Q.
That is, all elements of Q must be an element of one of the
minor systems in the range of 4. Each of these minor systems
of Q must also be connected, preventing the abstraction of
several unrelated elements. For example, several repositories
could not be grouped into a single repository unless some
subsystem joining them was also included.

The final restriction on the two injections is that the chosen
minor systems of Q must be connected in the’same way
as the singular minor systems of P. That is, if a connector
subsystem and a nodal subsystem of P are joined (say a task
and a stream), then the corresponding connector subsystem and
nodal subsystem of Q must also be joined. The injection p is
used to map message connectors in P to message connectors
in Q since they may not be connector subsystems.

Fig. 11 shows two systems, one of which is a pattern for
the other. The pattern system is the system on the left and the
matched system is the system on the right. The letters indicate
the elements associated by the injection. The only nonsingular
minor subsystem matched in the target system is formed by
the two repositories and the task that connects them (h’). It is
enclosed in dashed lines to identify the matched components.
The bidirectional memory access indicated by g’ in the target
system is not part of the subsystem h’ since it crosses the
boundary.

In practice, most systems will not be matched in their
entirety by the taxonomy patterns. For example, the canonical
compiler contains components that can be characterized as a
pipe and filter system. It also has overlapping components
that can be characterized as a shared memory system. Any
useful method of characterizing system structures should be
able to handle structures embedded within systems. We define
a subpattern match as a matching of a pattern system to a
system embedded within another system. Thus, we can view
the compiler as either an instance of a pipe and filter system
or of a shared memory system. The definition is identical
to pattern match except that specialization is used instead of
equivalence, and the range of the pattern match injection does
not have to partition the target system. That is, not all elements
of the target system must be matched.

Although pattern and subpattern matching are useful, more
expressive patterns are required. If, in the example in Fig. 1,
a bidirectional memory access connection was added between
the repository h’, and the task f’, the pattem would no longer

E B.

same way as the singular minor systems of P.

308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 4, APRIL 1995

,* 0

Fig. 12. Central repository pattem and an example matched system.

match. There is no element in the pattern to correspond to
the extra connection, and no way to repartition the target
system to produce a match that includes the new connector. To
handle this problem we augment the pattems with symbols that
indicate families of patterns. The augmented pattern matches
a system if any of the pattems generated from the augmented
pattem match the system. There are two complimentary ap-
proaches. The first, based on regular expressions uses simple
altemation and repetition operators. The second is based on
graph grammars [5] and is used to express more complex
repetitive structures.

A. Regular Expressions

Fig. 12 shows the pattern for the central repository class
of system architectures and a system matched by the pattern.
The rectangle around the repository access connectors with
dividing lines provides altemation. The "+" symbol is used to
indicate one or more repetitions of a pattern element. In the
example, the "+" next to the altemation means one or more
memory access connections between the repository and a task.

The operator has a higher precedence when applied to a
node than to a connector. In the example, the "+" applied to
the task is expanded before the "+" applied to the connection
element. Therefore, the systems recognized by the pattem
are systems composed of a single repository (or system that
abstracts to a repository) and several tasks (or systems that
abstract to tasks), and each task is connected to the repository
by one or more memory access connectors.

The regular expression operator binds to the closest element.
When the operator is near the point where a connection joins
to a node, the operator applies to the node.

Fig. 13 gives the pattem for a distributed repository and
an example of a system that is matched by the pattern. The
difference between this pattern and the previous one is that
the repository is also modified by the "+" repetition operator
and the altemation for the memory access connectors is now
modified by the "*" repetition operator. This pattem matches
one or more repositories that are connected to one or more
tasks. Not all pairs of repositories and tasks need be connected
("*" means zero or more).

Two other operators are provided, the '?" and "!" operators.
As in regular expressions for strings, the "?" operator indicates
an optional element. In all of the cases presented so far, an
element of the system matches if there is a minor system with
the same interface. The "!" operator restricts the match to
be a singular minor system. This operator may be applied to

Fig. 13. Distributed repository pattern and example matched system.

2.++ ::=

Fig. 14. Simple pipe and filter system without feedback

connectors and to any grammatical construct. It may also be
combined with the "+ ," "?," and "+" operators.

These repetition operators provide parallel repetition in the
patterns. That is, the repetition of elements connected to
the same element or group of elements. Two examples of
parallel repetition are multiple streams between two filters,
and multiple transaction programs accessing a single database.
Recursive repetition involves an element that will connect, in
tum, to the elements generated by the pattem. An example
is the pattem for a pipe and filter system. The next section
describes a method to specify recursive pattems.

B. Grammar Productions

To handle recursive repetition, we extend the pattem mech-
anism to provide the equivalent of context free grammars.
This is done using a limited version of graph grammars [5] .
The full power of unrestricted graph grammars is not required
for specifying the patterns we are interested in. Unrestricted
graph grammars provide arbitrary rewriting of graphs. We are
interested only in the subset of graph grammars that provides
syntactic recognition.

Fig. 14 shows a pattem that matches simple pipe and filter
systems with no feedback between the filters. The rounded
rectangle is used to represent nonterminal nodes. A simple pipe
and filter system without feedback is a task with two multiple
stream connections, or a task connected by a multiple stream
connection to a simple pipe and filter system without feedback.

All rules have a single nonterminal element on the left
hand side. The nonterminal has a context that consists of
primitive elements of the notation. This context consists only
of the primitive elements that may directly connect to the
nonterminal element. The right hand side is an arbitrary system
that may contain nonterminal elements. The interface of the
right hand side must be identical to the context of the left
hand side.

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE 309

“I . .-

Fig. 15. Pipe and filter system with feedback

There may be more than one rule for a given nonterminal.
and rules may have different contexts. Fig. 14 shows a short
form for multiple rules with the same context. Each of the
alternate right hand sides is separated by a vertical bar.
Rules may only be applied if the context of the embedded
nonterminal matches the context of the rule.

When more than one element of the context is of the same
type and has the same attributes then the context elements must
be labeled. These labels are local to the rule and cannot be used
to govern the application of subsequent rules to nonterminals
embedded within the right hand side. All possible bindings
of ambiguous context elements are tried when generating a
pattern system.

When a production is applied to a nonterminal node, only
the ends of the connectors connected to the nonterminal node
are changed (to the new nodes introduced by the production).
The other ends of the connections remain connected to the
same nodes.

As with conventional grammars, more than one rule may
be provided for a given nonterminal. The same nonterminal
node may be defined for more than one context. However,
only those productions which have the same context as the
nonterminal node may be applied.

Although the capabilities of the regular expression operators
may be provided by the grammar mechanism, we believe that
the regular expression operators provide a concise representa-
tion of some structures. The grammar version of the structures
would not be as clear. Instead, we show how they may be
combined.

The system matched by applying the “?,” “+,” or “*”
operators to a nonterminal is equivalent to replicating the
nonterminal before expanding it. That is, not all of the systems
matched by the nonterminal must be matched by the same
parse.

The addition of repetition operators requires some changes
to the rules governing the context of left and right hand
sides of grammar productions. Context elements that have
been modified with the regular expression operators may be
combined by labeling them with the same label. That is,
a single context element from the left hand side may be
represented by more than one context element on the right-
hand side subject to the following rules.

n

Fig. 16. Example pipe and filter system.

Elements with the “*” operator may be split into multiple
elements of the same type, each modified with the “*”
operator.
Elements with the “+” operator may be split into multiple
elements of the same type, each modified with the “+”
operator.

Two cases must be explained. The first is matching the
context of the left- and right-hand sides. This is done by
combining those elements on the right hand side with the
same label (subject to the rules above) and checking to make
sure that the contexts match. The second case is determining
the contexts of embedded nonterminals to decide which rule
to apply. The context of the embedded symbols may also be
labeled and a similar procedure is followed. The elements with
the same labels are merged and the rule with the same context
is selected. Fig. 15 shows an example.

The figure shows the pattern for a pipe and filter system with
feedback. To do this, the system generated by a nonterminal
must be ablz to communicate with all of the filters generated
by previous grammar rules. Examples of both types of context
merges are given in the fourth rule. The context of the left hand
and right hand sides match since the two streams modified with
the ‘‘ *” operator are both given the label “b.” The second set
of rules is used for subsequent grammar productions of the
nested nonterminal, because both streams modified by the ‘‘*
” operator have the label “b.”

C. Strength of Pattem Match

Some systems may be matched by more than one pattern.
For example, the pattern given in Fig. 14 only matches a
pipe and filter system composed of a single sequence of
tasks without feedback. If we modify the pattern, adding “+”
operators to the tasks, we get a pattern that matches pipe and
filter systems that are comprised of stages of tasks. Fig. 16
shows an example system matched by the new pattern. This
pattern also matches the same systems matched by the pattern
in Fig. 14. Thus, it is advantageous to have some metric of
the strength of the match. The ideal definition of the strongest
match is the pattem that matches the fewest systems, although
it still might match an infinite number of systems. In this
section we define an approximation.

Suppose we have two pattern systems that match a given
target system. We start by defining a partial order between
corresponding elements of the two patterns that match the
same minor system of the target system. The partial order
is defined based on how the elements have been modified

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 4, APRIL 1995

* 5 + * 2 !* !* 5 !+
+ 5 ? ? I !? !+ 5 !?
+ 5 - - 5 !- !+ 5 !-
?I” * s o

Fig. 15. Partial order for regular expressions.

by the regular expression operators, and the “!” operator. This
relation, for which we use the ‘‘I” symbol, is given in Fig. 17.
For elements a of one pattern and b of another, a 5 b, if b is a
better match than a. The symbol ‘‘-” is used to represent an
unmodified element and the symbol “ O” is used to represent
an element missing from the pattern. Since a partial order is
transitive and reflexive, the transitive and reflexive closures
of Fig. 17 are also defined. We extend the partial order from
individual elements of the two patterns to the entire patterns in
the obvious way. One pattern match is stronger than the other
if the partial order holds for all elements of the two patterns.

V. A TAXONOMY OF SYSTEM ARCHITECTURES

This section describes a small taxonomy of software archi-
tectures based on our example architectural language. Since
it is based on the example notation, it is limited to syntactic
differences in the topology and types of system descriptions.
Even so, it provides a variety of structure classes, and can
represent many of the types of architecture described in the
literature. The purpose of such a taxonomy is to provide a
syllabus of useful system structures. The next step, discussed
in the section on future work, is to evaluate the taxonomy
against real systems and add information on the applicability
of each class to different types of problems.

Each class of any taxonomy developed using our approach
is described as a set of patterns. A given system is a member of
the class if it is matched by one of the pattems in the set. The
classes of our taxonomy are derived from two sources, Garlan
and Shaws paper on higher level abstractions [7] and the book
Coordinated Systems [6]. The taxonomy currently contains six
classes, two of which have several subclasses. Some of these
patterns have already been shown in figures. Fig. 18 gives an
outline of the taxonomy.

The pipe and filter system with nonoverlapping feedback
is similar to that with general feedback, but the feedback
connectors may not overlap. They may be between successive
sets of the filters, or nested. The bidirectional pipe and
filter system is similar to the unidirectional case without
feedback, but the streams may be bidirectional, or they may
be unidirectional in either direction. The message network is
a set of tasks that are connected by one or more message
connectors. There are no restrictions on the number of message
connectors, or the number of tasks.

The pattern for the layered system is shown in Fig. 19. It
consists of two productions and is similar to the simple pipe
and filter system. The difference is that the procedure call
communication primitive is used, and the nonterminal node is
replicated. The layered random repository pattern is similar to

Class Notes
Pipe and Filter

Unidirectional
Without Feedback

Simple Fig. 14
With Feedback Fig. 15

Non-overlapping Feedback
Bidirectional

Simple
Random Repository

Central
Layered
Distributed

Message Network
Layered
Knowledge Interpreter
Client-Server

Fig, 18. Taxonomy outline.

Fig. 12

Fig. 13

Fig. 19
Fig. 11, add ’+’ to connectors
Fig. 12, Task instead of Repository

+
Fig. 19. Layered system pattern

the pipe and filter pattern. It may be described as a sequence
of repositories where each repository is connected to the next
by one or more tasks and memory access connections.

The client server pattern is similar to the central repository
pattern, but the central entity is a task instead of a repository.
The distinction between these two structures is impossible
without the types provided by our notation or behavioral
information for the central component.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a formal, syntactic theory of software
architecture based on typed nodes and connections. There
are several reasons we believe this to be an appropriate
representation for system structure. The first is that it uses a
syntactic technique analogous to that used to express program-
ming language structure: regular expressions and context free
grammars. It is essentially a diagrammatic form of extended
BNF notation, and handling of attributes and semantics can
be added using techniques analogous to attribute grammars
and denotational semantics for programming languages. The
second advantage of the notation is that it is easily extensible
to include new primitive element types.

We have shown how types and abstraction can be used
to represent system structure and to categorize architectural
styles. Even though the technique we use is syntactic, the
types allow us to model the intended semantic roles that are
important to the structural architecture of the system. Our
technique works with any graph-based notation that uses types
in this way. This paper presented an example notation that
illustrates some of advantages of types, and a taxonomy based
on the notation and our pattern matching technique. Practical
applications of our approach would likely use a richer set of
types, and with a more precise characterization of the semantic
properties each type represents.

I

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE 311

This paper makes two contributions to the field of software
architecture. The first is the pattern matching mechanism,
which provides a general means of describing and recognizing
classes of software architecture. The other is an initial nota-
tidn and taxonomy that illustrates these characteristics while
remaining open to the addition of other language features.

A taxonomy based on a more general architectural language
that includes semantics would provide a means of comparing
system structure classes, of classifying the structure of existing
systems, and of understanding software architecture in general.
The taxonomy can provide a syllabus that may be used to
design new systems. Instead of emphasizing a single structure
class, designers may choose to use different structures in
different parts of a system. The classification of the structure
in existing systems may assist in analyzing those systems for
the purpose of software maintenance. But most importantly,
a taxonomy of system structures may provide a better un-
derstanding of the roles of components and their interaction
in much the same way that current data structure taxonomies
enhance the understanding of procedural programs. We believe
our classification framework to be a first step toward this goal.

A. Future Work

We envision several ways in which this research may be
extended. Among them are extending the number and scope
of element types, attributes, modeling dynamic systems, and
providing a reasoning framework.

B. A Richer Set of Types

While the types we have used to motivate our pattem mech-
anism are capable of describing the connection architecture of
a range of systems described in the literature, the notation is
by no means complete. In addition, the interpretation given for
each of the types was incomplete and informal. For the purpose
of our pattem matching mechanism, the existence of separate
types is more important than the particular interpretation of the
types. Two obvious extensions to the research are to provide
a formal definition for each type, and to add new types of
nodes and connections. The new definitions of the types would
restrict the interpretation of the type, specifying in more detail
the properties common to instances of the types. New types
of elements may be added as distinct types, or as subtypes of
the existing types.

If the new types are added as distinct types, the taxonomy
must be expanded to use the new types. This may involve
new structure classes, or the additional patterns for existing
structure classes to include the new types. With more types,
the interpretation of the existing types (i.e., mapping to real
world design or implementation artifacts) may be narrowed.
The existing types may be completely replaced by a new set of
types, particularly if the application domain provides its own
element types.

If the new types are added as subtypes of existing types, then
the taxonomy needs no modification for the existing classes.
Subclasses of the taxonomy may be refined to use the subtypes.
For example, a subtype of the central repository structure
class may be refined to use a database subtype of repository.

While the properties of each subtype must be consistent
with the properties of the parent type, the subtype will add
additional constraints on the properties of its instances. Thus,
the subtypes will provide stricter interpretations of the parent
types.

C. Attributes

Adding attributes to the elements of the notation may be
useful in specifying design or implementation information. The
attributes can be treated as orthogonal to adding new types,
and may provide a means of specifying stricter interpretations.
Examples of attributes are the buffer size of a stream or
the locking protocol for a repository that represents shared
memory. If the attributes are incorporated into the definitions
of interface, equality and specialization, then they can also be
used to refine the taxonomy.

D. Dynamic Architectures

We view the dynamic changes to the structure of a system
as orthogonal to the structure of the system. In this way,
we may model systems whose dynamic behavior changes its
classification within the taxonomy.

A possible approach is to model each singular minor system
that can change its interface as a finite state machine. Each
interface configuration is a state, and the allowable changes
between configurations determine the transitions of the state
machine. The model of a Unix shell would have two states.
The first is a task that reads from a stream and writes to
two streams. The second state is a task with the same stream
characteristics but also invoking another task. The transition
function simply moves between the two states.

This simple model has some advantages. We can extend the
power of the model by substituting push down automata or
Turing machines for the finite state machines. Another way is
to provide a means of specifying the events that trigger the
transitions. Systems can be modeled as compositions of these
automata into a single automaton.

E. A Framework for Reasoning

There are two ways in which the notation may be used as a
framework for reasoning about systems. The first is to use it as
a framework for specifying the behavior of the systems. The
notation describes the structure of the system and a notation
such as CCS [9] or CSP [SI is used to specify the behavior
of elements or groups of elements. For example, a repository
may be modeled as a process in these notations, and locking
mechanisms and protocols could be defined. Another model
that may be used is provided by Allen and Garlan [3]. This
method specifies connections as a set of roles and glue logic
that specifies the relationship between the roles. Components
have ports that may be associated with roles of connectors.
CSP is used to specify the ports, roles, and glue logic. A
slightly different approach taken by Abowd, Allen, and Garlan
[l] uses the Z language [l l] to specify the ports, roles, and
glue logic.

The other way the notation may be used as a framework for
reasoning about systems is the attribute mechanism discussed

312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 21, NO. 4, APRIL 1995

system(fig9, %% Name
%% EL
%% N
%% C
%% MS

[al. bbl, bb2, bb3].
[bbal, b W . bba3. bba4. bbe51.

I

I 1

1 . [
L 1.

[bba4, bba51

[all,
I 1.
[bbl, bb2. bb31.

I , [
[a1 .bbal], [a1 ,bba2],
[a1 .bba3]

[bbl ,bbal], (bb2,bbaZI.
(bb2.bba41, (bb3.bba31.
[bb3,bba5]

1. I

/ ‘ I <
[I

1
).

%% v
%% Types
%% Task
%% File
%% Repository
%% Tbl
%% HeleroNodes
36% Heiem Conns
96% Message
%% Stream
%% FileAcc
%% TbW
%% RepAcc
%% Proc
%% Prod
%% lnmk
%% Read
%% Write
%% Biiir
%% MRead
%% MWrite
%% Mnn
%% S E

70% dsi

%% has
%% msg

Fig. 20. Prolog representation of Fig. 9.

previously. Since this information can be incorporated into
the equivalence and specialization relations, we can use these
relations to define equivalence preserving transformations.
These transformations can be used to reason about dynamics,
or about relations between different classes of system structure.
Another important application of the extended notation is a
maintenance theory for systems.

Garlan and Shaw 171 show an example of a system with dif-
ferent architectural interpretations. The system is the Hearsay-
I1 speech understanding system. By changing the interpretation
of different components, the system may be viewed as a
blackboard model (Central Repository in our taxonomy) or
an interpreter (Knowledge Interpreter in our taxonomy). In
our current notation, this requires a change in the element
types to reflect the new interpretation. However, with the
addition of semantic interpretations of the symbols, and some
set of semantic preserving transformations, the types of views
advocated by Garlan and Shaw may be possible.

F. Prototype Implementation

A prototype implementation of the pattern matching algo-
rithm has been built using Prolog. The system is represented
as a predicate named system with four parameters: the name
of the system, and three lists representing the three elements
of the System tuple from Section 111. Tuples and sets are
represented as lists. The relations are lists of ordered pairs,
each of which is represented as a two element list. Fig. 20
shows an example Prolog encoding of the system from Fig. 9.
The system name isfig9. The “76” characters indicate the start
of Prolog comments, which are terminated by the end of a line.

This representation allows more than one system to be
loaded in the database at a time. It also permits temporary

systems to be generated and held in variables without adding
them to the Prolog factbase. For convenience, rules are pro-
vided for each of the element type subsets. These rules take
a system as one argument and a Prolog symbol as the other
argument and are satisfied if the symbol is part of the relation.
As an example, the predicate task(Sys,aZ) is satisfied if Sys is
bound to the system in Fig. 20.

We have predicates that check that the well-formedness of
a system, compute the interface of a system, and evaluate
equivalence and specialization. These predicates are used to
implement simple pattern matching and subpattern matching.
We have an interface for the visual notation which is able to
interact with the Prolog engine.

G. Limitations of the Technique

It is currently not known if our pattern mechanism is
sufficient to describe all of the interesting structure classes.
It does, however, handle a reasonable number of them. We
are a little concerned about controlling the complexity of
the descriptions. The graph grammars necessary to describe
some involved structures may not be easy to understand. This
may simply be a consequence of a complex structure and any
representation of the structure would be just as complex.

The technique we have described is entirely syntactic.
However, the syntax approach uses the types of the elements to
abstract semantics common to instances of the type. We have
also shown several ways in which more semantic information
may be incorporated into our pattern matching approach.

ACKNOWLEDGMENT

The presentation of this paper was greatly improved by the
suggestions of the referees.

REFERENCES

G. Abowd, R. Allen, and D. Garlan, “Using style to give meaning to
software architecture,” in Proc. ACM SIGSOFT ’93 Symp. Foundations
of Softwure Eng., Redondo Beach, CA, 1993, pp. 9-20.
R. Allen and D. Garlan, “Toward formalized software architectures,”
Carnegie Mellon Univ., School of Comput. Sci., Tech. Rep. CMU-CS-

-, “Formalizing architectural connection,” in Proc. 16th In?. Conf:
Sofhvare Eng., Sorrento, Italy, May 1994, pp. 71-80.
T. Dean, “Software characterization using connectivity,” Ph.D. disserta-
tion, Dep. Comput. and Inform. Sci., Queen’s Univ., Kingston, Canada,
1993.
H. Fahmy and D. Blostein, “A survey of graph grammars: Theory
and applications,” in l l t h In?. Conf: Pattern Recognition,; also in
Pattern Recognition Methodology and Systems Vol. I I . The Hague,
Netherlands: Sept. 1992, pp. 294-298.
R. Fillman and D. Friedman, Coordinated Computing: Tools and Tech-
niques for Distributed Sofhvare.
D. Garlan and M. Shaw, “An introduction to software architecture,”
Advances in Software Engineering and Knowledge Engineering. New
York: World Scientific, 1993, Vol. 1, pp. 1-39.
C. Hoare, “Communicating sequential processes,” CACM, vol. 21, no.
8, pp. 666677, Aug. 1978.
R. Milner, “A calculus of communicating systems,” Lecture Notes in
Computer Science 92.
M. Shaw, “Larger scale systems require higher-level abstractions,” in
Proc. FiBh Int. Workshop on Sofrware Specijcation and Design, EEE
Computer Society, 1989, pp. 143-146.
J. Spivey, The Z Notation: A Reference Manual. Englewood Cliffs,
NJ: Rentice-Hall, 1989.

92-163, July 1992.

New York: McGraw-Hill, 1984.

New York: Springer-Verlag. 1980.

DEAN AND CORDY: SYNTACTIC THEORY OF SOFTWARE ARCHITECTURE 313

Thomas R. Dean received the M.Sc. degree from
the University of Saskatchewan in 1988, and the
Ph.D. degree from Queen’s University, Kingston,
Canada, in 1993.

He is an Adjunct Assistant Professor of Comput-
ing and Information Science at Queen’s University.
Current research interests include software architec-
ture, design theory and design environments.
Dr. Dean is a member of the Software Technology

Laboratory at Queen’s University.

James R. Cordy is Associate Professor of Comput-
ing and Information Science at Queen’s University,
Kingston, Canada. He is the co-designer of the
programming languages Concurrent Euclid, Turing
and Turing Plus, the S/SL compiler specification
language, the TXL transformation language and the
visual language GVL. He is a co-author of the books
The Turing Programming Language: Design and
Definition (1988) and Languages for Developing
User Interfaces (1992).

Dr. Cordy was Program Char of ICCL’92, the
1992 International Conference on Computer Languages, serves on the program
committees of ICCL’94 and CASE’95, and is a member of the editorial board
of the Journal of Programming Languages.

