
3 4 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

cenarios present possible ways to use a system to accomplish some de-
sired function. As scenario-based approaches attract increasing inter-
est among requirements engineers, the literature on scenario methods,
models, and notations proliferates. Object-oriented analysis and de-

sign use cases1 highlight the benefits of creating concrete, use-oriented system de-
scriptions prior to modeling function, data, and behavior. Proposed extensions and
alternatives include adding structure to use cases;2 the formal treatment of scenar-
ios;3 and the use of scenarios during documentation, discussion, and evolution of
requirements.4 Scenarios have also become popular in other fields, notably
human–computer interaction5 and strategic planning.6

Scenario use also pervades industrial practice, but comprehensive and ex-
pressive studies on the practical relevance of research techniques remain rare.
Recent surveys are mostly broad in scope7,8 or draw their conclusions from a sin-
gle project.9,10

Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and Peter Haumer, RWTH Aachen

Scenarios in
System Development:

Current Practice

Scenar io-based approaches a re b ecoming ubiqu i tous in sys tems
analys i s and des ign but remain vague in def in i t ion and scop e. A
sur vey o f cur rent prac t i ces ind icates we must o f fe r b et ter means for
s t ruc tur ing, managing, and deve lop ing the i r use in d iverse contex ts.

S

.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 3 5

We in the European Esprit project Crews
(Cooperative Requirements Engineering with
Scenarios) are seeking a deeper understanding of
scenario diversity, necessary to improve method-
ological and tool support for scenario-based re-
quirements engineering. We follow a two-pronged
strategy to gain this understanding:

♦ First, following the “three dimensions” re-
quirements engineering framework developed in
the precursor Nature project,11 we developed a sce-
nario classification framework based on a compre-
hensive survey of scenario literature in requirements
engineering, human–computer interaction, and
other fields.12 We used the framework to classify 11
prominent scenario-based approaches.

♦ To complement this research framework, we
investigated scenario applications in industrial pro-
jects through site visits with scenario user projects.
The field’s lack of theory compelled an exploratory
study aimed mainly at understanding the diversity
of scenario applications.

This article focuses on our site visits. We found
that while many companies express interest in
Jacobson’s use case approach, actual scenario usage
often falls outside what is described in textbooks
and standard methodologies. Users therefore face
significant scenario management problems not yet
addressed adequately in theory or practice, and are
demanding solutions to these problems.

OVERVIEW OF SITE VISITS

We selected 15 projects in four European coun-
tries for site visits. Each visit involved two to three
people from the Crews project and one or two
members from the examined project, mostly pro-
ject leaders or consultants. The duration varied from
half a day to one day. We recruited most sites directly
or indirectly through software company represen-
tatives and independent consultants serving on the
Crews Industrial Steering Committee.

We documented the site visits in minutes and
summarized them in a technical report13 highlighting
each project’s background, scenario characteristics,
how scenarios were produced and used, benefits and
problems or needs noted by the interview partners,
and the main lessons learned from each visit.

Preparation
We used the Crews classification framework12 to

derive questions to characterize the scenarios used.
This framework, developed from a comprehensive
literature survey, views scenarios from four differ-
ent angles: form, purpose, content, and life cycle
(see Figure 1).

The form view pertains to a scenario’s expression
mode. Typical questions include whether a scenario
is formally or informally described, and whether it is
in a static, animated, or interactive form.

The contents view concerns the
kind of knowledge a scenario ex-
presses; its scope can vary from
system-internal to organizational,
and it can cover normal or excep-
tional cases.

The purpose view captures the
role a scenario aims to play in soft-
ware development, such as de-
scribing system functionality, ex-

Purpose Form
Why use a
scenario?

In which form is a
scenario expressed?

aims at

expressed
under

has

Contents
What is the knowledge

expressed in a scenario?

evolves

Lifecycle
How to manipulate

a scenario?

Scenario

Figure 1. Four views on scenarios: form, purpose, content, and life cycle.

The following members of the Crews project and the Scenario
Working Group of the German Informatics Society have contributed to
the empirical studies underlying this article and related discussions: M.
Arnold (FIDES Informatik Zürich, Switzerland); C. Ben Achour, C. Cauvet,
J. Ralyté, C. Rolland (Univ. Paris-Sorbonne, France); E. Dubois, P. Heymans
(FUNDP Namur, Belgium); M. Erdmann, R. Studer (Univ. of Karlsruhe,
Germany); M. Glinz, J. Ryser (Univ. of Zürich, Switzerland); R. Knoll (RWG
GmbH, Stuttgart, Germany); N.A.M. Maiden, S. Minocha, A. Sutcliffe (City
Univ. London, UK); B. Paech (Technical Univ. of Munich, Germany).

.

3 6 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

ploring design alternatives, or explaining a system’s
drawbacks or inefficiencies.

The life cycle view considers scenarios as artifacts
existing and evolving in time and pertains to tech-
nical handling, evolution, and project management.

Although these four views proved useful to
structure the real-world observations, the focus on
each shifted during our investigation. For example,
in practice, form issues play a far less important role
than research literature would suggest, while usage
and life cycle aspects are much richer than antici-
pated from the literature survey.

Besides the scenario characteristics, the inter-
view plan also addressed two other topics:

♦ a project profile, to better understand scenario
use in a broader context and identify potential cor-
relations between project and scenario character-
istics; and

♦ experiences, to elicit the main benefits gained
through scenario use and capture open problems
and future needs.

To avoid bias, we let interview partners talk freely
about their overall development process, scenario
usage, and experiences. We used the interview plan
as a checklist to ask for missing information when
needed. In addition, we asked interview partners to
provide us with concrete project material explain-
ing their scenario generation and usage.

Project characteristics
Table 1 characterizes projects in terms of applica-

tion domain, size, whether the project was performed
in–house or by a software contractor, and whether
we got our insights from a consultant. We classified
projects as small (less than 10 person-years), medium

(between 10 and 50 person-years), and large (greater
than 50 person-years).

Table 1 shows how widely the projects varied in
terms of application domain and project size.
Clearly, scenario usage is not restricted to a specific
application domain or project size.

Scenario characteristics
Table 2 characterizes scenarios usage according

to the four views (form, content, purpose, and life
cycle). We characterize the relevance of table entries
using three attribute values: “F” for frequent occur-
rence, “M”for moderate occurrence, and “—”for no
occurrence of that aspect in the project.

We found three categories of scenario content.
System context refers to descriptions of the broader
environment in which the system is embedded,
system interaction covers how the system interacts
with its environment, and internal system refers to
internal interactions among system components.

Scenario form seems to correlate with content,
and five basic representation types dominate.
Twelve projects used natural language heavily: one
used narrative text without any structure, eight used
structured text following a template or table struc-
ture, and three used a combination. Stakeholders
used natural language mostly for context and in-
teraction scenarios: 12 of the 13 projects focusing
on interaction and context scenarios relied on tex-
tual notations. This holds to a lesser extent for im-
ages used as illustration, mostly in context and in-
teraction scenarios, such as screen-dumps of user
interface forms. In contrast, three of four projects
dealing with internal scenarios employed more for-
mal diagrammatic notations such as object inter-

TABLE 1
PROJECT CHARACTERISTICS

Project Application Domain Size Developer

1 Medical information system Small Software contractor

2 Network documentation and management Small Software contractor

3 Business information system (banking) Large In-house

4 Business information system (public authorities) Large Consultant

5 Business information system (insurance) Small Consultant

6 Satellite communication Medium Consultant

7 Medical systems Medium In-house

8 Air traffic control systems Large Software contractor

9 Systems engineering for warships Large In-house

10 Radio telecommunication Large Consultant

11 Management of train networks Medium Consultant

12 CS applications for government and banks Medium Software contractor

13 Water invoicing management system Large Software contractor

14 CASE tools for bank applications Small Software contractor

15 Process engineering Medium Software contractor

.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 3 7

action or message trace diagrams and animations.
Beyond their expected purpose for requirements

elicitation and validation (not mentioned in the
table), other usage aspects played a major role. For
example, 13 projects depended on scenarios to
make requirements concrete by lowering the ab-
straction level; two even changed their process to
a scenario-based approach after encountering se-
vere problems with traditional abstract model de-

velopment. Nearly all projects stressed the role of
scenarios in reaching partial agreement and con-
sistency of the requirements specification.

Scenarios also helped reduce complexity and en-
force interdisciplinary development. Somewhat sur-
prisingly, 12 projects used dynamic scenarios to
elaborate static models, such as object model pop-
ulation and validation. We also observed some un-
usual but interesting interactions of scenarios with

TABLE 2
SCENARIO CHARACTERISTICS

Project
Scenario Facet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Narrative text F M F M M M M F M — — — F — M
Structured text F F M F F F F F F M — F F — F

Diagrammatic
notations — — M F — M F F — F F F F — —

Images F F M M M M — M M — — — M — —

Animations or
simulations — — — — — — — — F — F — — F —
Typical size (pages) 1-3 1-2 2-8 3-8 10-20 3-20 5-20 / / 1-2 3-10 1 10-200 * 10-50

System context M M M M — — — F F — — — F — F
System
interaction F F F F F F F F F — M F F F F
Internal system — — M — — — — M F F F — F — —

Concretization of
abstract models F M F F F F F F F — — F M M F
Scenarios instead
of abstract models — — — F F — — — — — — — — — —
Interdisciplinary
development F M F F F F F F F — — F F F F
Scenario use
with prototypes F F F F M M — — M — — F F F —
Complexity
reduction F F F F F F M F M M f F F F F
Agreement and
consistency F F F F F F F F F F M F F F M
Scenario use
with glossaries — — F M M — M — — — — — — — —
Reflection on
static models F F F F F F F F — — — F F F F

Partial views M M F F F F M F F F F M F — M
Distributed
scenario
development M — F F F M M F F M — — F F M
Review F F F F F F F M M M M M F — F
Traceability
issues F M F F F M M F F M M M F M M
Basis for
test cases M — M M M M M — M M M M M M M
Evolution F M F F F F F M F M F F F M F

* 80% of the screens of the end product

Pu
rp

os
e

an
d

 u
sa

g
e

Co
n

te
n

t
Fo

rm
Li

fe
 c

yc
le

 a
n

d
 m

an
ag

em
en

t

.

3 8 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

prototypes and glossaries, which we describe later.
Management issues included how to impose par-

tial views on a scenario, handle distributed scenario
development, enable quality assurance through sce-

nario reviews, make scenarios traceable along the
whole process, reuse scenarios as test cases, and
evolve scenarios. We elaborate on these later.

To summarize, we found much more diverse sce-
nario usage than you would expect based on the
Unified Modeling Language view of scenarios as in-
stances of use cases. Eleven of the 14 projects (P1-
P8, P12-P14) claimed they followed a use case ap-
proach, but all 11 extended the textbook version
significantly to make it work.

SCENARIO USAGE IN PRACTICE

While scenarios enable interdisciplinary learning
in requirements engineering, they also serve as
means for divisions of labor, with significant conse-
quences for project management and artifact inte-
gration. Table 2 provides a glimpse of the diverse
scenario purposes and uses we found in practice; we
summarize their benefits and shortcomings here.

Use scenarios when abstract
modeling fails

Thirteen projects used scenarios to make con-
crete abstract models. Projects P4 and P5 first ne-
glected systematic consideration of concrete sys-
tem usage. When these projects failed to develop
abstract conceptual models such as class models
due to the complexity of the problem domain, they
turned to scenarios to elicit and document cus-
tomer requirements, successfully in both cases.

In project P4, after half a year it became evident
that object model complexity and communication
overhead within the requirements engineering
team could not be managed anymore. Team mem-
bers did not yet sufficiently understand the busi-
ness processes to be supported, and because the
customer did not understand the abstract models,
validating them became almost impossible.

Developers therefore stopped defining the
class model and established a scenario-based ap-
proach. They first used scenarios to divide the ap-

plication domain into 15 topics, such as personal
data capture and fines. They then assigned each
topic to a development team of five to seven stake-
holders. To understand each topic, they again used

scenarios, which helped inte-
grate the domain experts into
analysis, since they found it
easier to talk about concrete
scenarios than abstract mod-

els. In addition, the focus of project management
shifted from ensuring consistency across the whole
project to achieving good partial understanding
of individual topics.

Project P5 initially modeled their business
processes using Petri nets. After defining more than
120 processes this way, interrelating a new model
with the existing models and assuring consistency
became almost impossible. Project managers there-
fore decided to stop formalizing the business
processes, instead employing a less formal scenario-
driven modeling approach. Just 27 scenarios cap-
tured all potential system usage, primarily because
the Petri net-defined business processes were much
more fine-grained than the scenario descriptions.

Scenarios enforce
interdisciplinary learning

Scenario-based requirements engineering
calls for interdisciplinary development with in-
tensive and continuous developer–customer or
developer–user interaction. We attribute this to
three things.

First, writing scenarios requires detailed knowl-
edge that only domain experts can provide and val-
idate. The projects we evaluated mostly developed
scenarios in an evolutionary manner: Brainstorming
for potential scenarios led to topic-centered inter-
views at individual workplaces for elaborating in-
dividual scenarios in detail. In most projects, pre-
structured interviews became essential to keeping
discussions with the domain experts focused and
reasonably short.

Second, developers commonly describe current
and future system usage scenarios using the lan-
guage of the problem domain, vital to establish-
ing good communication with nontechnical do-
main experts.

Third, customers and users prefer to talk about
concrete scenarios rather than abstract models,
since the scenarios more closely match their per-
ception of the problem domain (except if formally
defined). The intensive cooperation during scenario

Customers and users prefer to talk about
concrete scenarios rather than abstract models.

.

creation and usage ensured the customer’s early
contribution to the developers’work.

Scenarios require the coexistence
of prototypes

In two-thirds of the projects, scenario generation
and usage interrelated with rapid prototyping or
even building first versions of the new system.
Particularly in projects P1-P4 and P12-P14, interview
partners stated that combining both approaches
yielded symbiotic effects. That is, without proto-
typing, the value of using scenarios would drop al-
most to zero, and vice versa. Project P1 developers
considered the coexistence of a prototype and typ-
ical usage scenarios vital to selling the overall pro-
ject to the customer and convincing the customer
that the new system would meet his needs.

Typically, developers integrated scenarios and
prototyping as follows. In early project stages, do-
main experts created a first set of scenarios to com-
municate application knowledge and their system
vision to system engineers (such as requirements
engineers, system architects, and designers).
Based on these, system engineers developed a re-
quirements specification, for example, a class
model and behavior model, and then used this to
develop prototypical implementations. Prototypes
varied from simple paper-based user interface
forms for validating the class model to a compre-
hensive scheme for validating real-time aspects of
the system to be built.

The initial scenarios served to validate the proto-
types and, indirectly, the requirements specification.
Evaluating the prototypes led to de-
tection of misunderstandings between
the domain experts and the system de-
veloper, for example, if the system de-
veloper made the wrong abstractions
based on the initial scenarios. Resolving such mis-
understandings becomes easier with scenarios as a
common basis for communication.

Equally important, validating prototypes against
the initial scenarios let the domain experts validate
the initial scenarios themselves to detect missing
functionality, overspecifications, errors, and even
unintended side effects. For example, in project P2
the developer mistakenly inferred a 1:1 association
between two domain classes from an imprecise sce-
nario statement. Although the domain expert re-
viewed the class model, no one recognized this error
until the customer played with a user interface pro-
totype that implemented the 1:1 association as two

single-selection list boxes for establishing references
between objects of the two classes. Comparing the
prototype with the scenario, the domain expert de-
tected the missing possibility to interrelate three or
more objects.

Unearthing the gaps helped developers improve
the scenarios or adapt the prototype or specifica-
tion to the new detected requirements. This estab-
lished an evolutionary system development process
in which the domain experts worked closely with
the software developers. This process depends,
however, on consistency among requirements spec-
ification, scenarios, and prototypes—a major prob-
lem for which no systematic approach exists.

Scenarios reduce complexity
Our findings support the claim that the use case

approach enforces a usage-oriented decomposition
of the requirements analysis problem from the very
beginning. Considering only one business process
or task at a time reduces the number of system as-
pects the stakeholder must cope with simultane-
ously. We therefore see scenarios as structuring de-
vices not only for requirements engineering but for
the whole system development process. For exam-
ple, projects P3-P6 and P10 used scenarios to divide
work between designers, programmers, and even
system testers.

To integrate the different use cases, several pro-
jects followed a sequential strategy. For example,
project P5 restricted the system’s first version to a
single scenario. First, developers defined at a
coarse-grained level the set of scenarios (business

processes) the system should support. A manage-
ment decision selected the most important sce-
nario. Developers then analyzed that scenario and
developed, tested, and installed a specification and
first version of the system. They then chose the
next scenario and repeated the procedure until the
system functioned sufficiently. While this develop-
ment approach caused some reworking, knowing
that further scenarios must be integrated led to a
reuse- and maintenance-oriented system design
and implementation.

Project P6 pursued a similar strategy, classifying
scenarios as primary and secondary to simplify the
system characteristics to deal with at a given time.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 3 9

Scenarios and prototypes complement
each other in a symbiotic manner.

.

This also helped to define delivery stages.
Project P12 experimented with complexity

measurements attached to the scenarios. De-
velopers used these measurements to guess the
development cycle’s length, for example by as-

sessing the number of involved objects, presence
of subsystem interaction, number of actions, and
so on. Management used this information to se-
lect the scenarios to be considered first, or those
to be decomposed.

The literature often emphasizes the role of sce-
narios in exception identification and exception
handling. We observed this only in projects P8, P9,
and P11, mostly due to their safety-critical nature.
Other projects explicitly denied the need for ex-
ceptional scenarios, one argument being that re-
viewing exceptions would unnecessarily complicate
discussions and distract domain experts from the
main system goals. One interview partner con-
tended that too detailed a discussion of exception
scenarios might endanger a system’s marketability.
We find this standpoint fraught with danger—ne-
glecting important exceptions in requirements en-
gineering could result in customer dissatisfaction
and higher costs in the long term.

Scenarios facilitate partial agreement
and consistency

Stakeholders in a system under development
have different goals; even their perceptions of real-
ity vary significantly. Bringing all stakeholders to-
gether and reaching an overall agreement on the
system usually proves too time-consuming or even
impossible. Similarly, assuring that the system to be
built conforms to all aspects of all existing systems
in an organization often proves infeasible. Nearly all
projects nonetheless used scenarios to drive the
agreement process and establish partial consistency
among existing systems. Apparently, reaching par-
tial agreement and consistency suffices in practice,
especially in large and complex projects (P4, P5, P8,
P9, P10, and P13).

In contrast to overall complexity reduction—
using scenarios to restrict system functionality—
here scenarios reduced the scope of discussions
and agreement processes. For example, using sce-
narios facilitated agreement about the perfor-

mance of a particular business process and the sup-
port the system provides for this. Scenarios served
also as means for discussing alternative solutions,
grounding discussions and negotiations on real
examples, and supporting trade-offs among

design alternatives.
Dealing with a concrete business

process scenario, the stakeholders
could detect where the use of indi-
vidual, conflicting taxonomies sug-

gested disagreement, even though they agreed in
principle. Scenarios also enabled the detection of
different perceptions. In one business process, for
example, one stakeholder assumed that another
needed evaluation of the customer data he pro-
duced, whereas that stakeholder was wondering
why she was even getting this information.

Link scenarios and glossaries
In project P3 (and to a lesser extent in P4, P5, and

P7), intertwining scenarios with a project-wide glos-
sary established a common understanding of terms
used among different stakeholder groups such as
developers, domain experts, and managers. When
developing a new scenario, the developer em-
ployed key terms already defined in the glossary
and established a reference to the corresponding
glossary item. For terms not yet in the glossary, the
developer introduced a new glossary item with a
short, general definition.

We noted an interesting bidirectional relation-
ship between scenarios and the glossary: The glos-
sary items related to (parts of) one or more scenar-
ios in which the item defined plays an important
role. Technically, developers realized this by estab-
lishing a hypertext infrastructure in a project-wide
intranet that linked corresponding scenario parts
and glossary items.

This permitted defining items in abstract terms
and relating them to a broader usage context. The
relations established between terms and scenarios
served to explain the definitions by a set of con-
crete usages represented in the scenarios. Those re-
lations helped the developers and the domain ex-
pert adjust their interpretation of the key terms
used and thereby reach a common, project-wide
understanding. Moreover, these relations helped
new project members become familiar with the
project terminology.

In addition, the relationships established between
scenarios and the glossary served as access paths for
the scenarios themselves. For example, a stakeholder

4 0 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

Scenarios facilitate agreement about system
support for particular business processes.

.

interested in the use of a certain artifact in all busi-
ness processes, such as a customer’s creditworthi-
ness file, could use the glossary–scenario relations to
access all relevant scenarios such as “check credit-
worthiness,”“decide on granting a loan,”and so forth.

Reflect on static models
Although scenarios were originally intended to

bring dynamic aspects into requirements specifica-
tion, 12 projects used scenarios to define and vali-
date static (object) models. For example, developers
used them to check object model completeness
and to populate object models by deriving new ob-
jects or identifying constraints such as cardinalities
of associations or plausibility conditions on at-
tribute values.

We identified two ways scenarios helped define
and validate structural models. Projects P1, P3-P6,
P12, P14, and P15 employed a sequential develop-
ment chain starting with informal scenarios gradu-
ally transformed into conceptual structural models.
For example, P1 identified domain objects and re-
lations from scenarios’textual representations, then
transformed them into a prestructure such as class-
responsiblity-collaboration (CRC) cards customers
or users could still understand. They then used the
structural descriptions to define a more formal ob-
ject model.

P2, P7, P8, and P13 developers created scenarios
and structural models in parallel and independently,
thereby establishing two de-
scriptions of the future system.
They cross-checked those de-
scriptions to identify inconsisten-
cies. Detecting conflicts and gaps
led to improvement of both the object models and
the scenarios.

SCENARIOS AS ARTIFACTS

In all projects, the developers viewed scenario
creation, documentation, and evaluation as a major
effort. Even developing normal, nonexceptional sce-
narios required significant effort, for several reasons.
For one, domain experts normally do not reflect on
their daily work. If more than one expert is involved,
their statements often differ; statements might
even change from day to day as the experts become
more explicit about their current way of working
and their visions of what the system will be.

Scenarios thus proved not to be the simple

things many assume they are but complex artifacts
that evolve over time and must therefore be man-
aged. In addition, most developers recognized the
need to structure scenarios according to certain cri-
teria. We discuss some of these below.

Partial views on scenarios
Some scenarios affect many stakeholders or are

so complex that a single stakeholder is only inter-
ested in part of them. In project P13 we found sce-
nario descriptions up to 200 pages long; the need
for different views on a single scenario also emerged
in projects P3-P6, P8, P10, and P11. We identified
the need for three such views:

♦ Manager/developer views. Whereas a man-
ager often needs only to understand a scenario on
an abstract level, developers and domain experts
require a more detailed scenario description. To en-
able such views on a single scenario, some projects
used two kinds of scenario models: a graphical one
providing enough information for managers and a
detailed scenario description for domain experts
and developers. Though developed in parallel,
keeping these models consistent often became a
major problem.

♦ Partitioned scenarios for work distribution.
Scenario views formed a basis for distributing work
within and among development teams. This can
best be illustrated using message trace diagrams.
In the radio telecommunications project P10, ob-

jects expressed in an MTD could be divided into
parts defining subsystems such as base stations and
several types of mobile stations. Project managers
used such divisions to assign responsibility for the
subsystems (parts of the MTD). The messages ex-
changed between objects of different parts de-
scribed the interfaces between those subsystems.
Interactions between objects in a single subsystem
only interest the developers responsible for imple-
menting, validating, and testing this subsystem.
Defining such views is fairly easy for MTDs but more
difficult for scenarios represented as prose or struc-
tured text. Despite the lack of a formal approach to
defining such views (partitions) using structured or
unstructured text, developers established such
views in many projects.

♦ Scenarios divided based on the underlying

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 4 1

Scenarios are complex artifacts that evolve
over time and must therefore be managed.

.

business process. Especially with large business
processes, certain stakeholders are interested only in
particular tasks or activities performed in those
processes. In most cases such views were estab-
lished informally. Only in project P9, where warfare
scenarios were simulated, did developers define
such views formally to enable the display of rele-
vant information to the right stakeholders during
scenario animation.

Managing distributed scenario
development

In large projects and in the case of a complex
problem domain (P4, P5, P8, P9, P10, and P13), sev-
eral teams developed the scenarios in parallel. This
complicated management of the distributed sce-
nario development and the resulting scenarios.

Project P4 developers devised an interesting
strategy for managing distributed scenario devel-
opment, creating hundreds of scenarios individually
across spatially distributed teams. They first divided
the problem domain into 15 topics (business process
parts). Each “topic team”then defined the scenarios
for each assigned topic, and a scenario management
team managed the developed scenarios.

A topic team could only
reuse (part of) a scenario de-
veloped by another topic
team if it was a public sce-
nario. The team could also
create a “raw scenario,”which
detects action sequences in
their scenarios that either

constitute a scenario of general interest or belong
to another topic. After roughly specifying the raw
scenario, the topic team passed it to the scenario
management team, who identified the topic team
responsible for elaborating the scenario.

Once fully defined, a scenario passed to the man-
agement team, who published it in the central li-
brary as a public scenario. For each public scenario,
the management team maintains references to the
team responsible for the scenario and the teams
using the scenario. Based on this information, bi-
lateral or multilateral meetings between the topic
teams helped them adjust intertopic dependencies
and assure consistent propagation of changes.

Reviewing scenarios
Similar to other software artifacts, scenarios are

important project results that must be reviewed to
establish high quality. Projects P1-P7, P13, and P15

established walkthroughs or inspection processes.
Sometimes those involved in scenario creation con-
ducted the review, sometimes domain experts not
involved in scenario creation did it. In P4 and P7, ex-
perts from other domains were involved, such as
quality assurance people, managers, and system
maintenance people. Unfortunately, we could not
obtain quantitative measurements about the use
and impact of reviews because such information
was not captured during the projects.

Scenario evolution
In all projects, scenario definition was not a one-

shot activity; the scenarios evolved over time. We
found four types of evolution:

♦ Top-down decomposition. At the beginning of
a project, developers often defined scenarios on an
abstract level to get an overview of the system and
its functionality. Later, they further elaborated these
scenarios. A typical example is the definition of sce-
narios according to the abstractions used for defin-
ing business processes. First, the developers model
the business processes affected, supported, or au-
tomated by the new system in a set of scenarios.
Next, they refine them by tasks performed in each
business process, and refine the relations defined
between the business processes represented in the
first scenarios to the task level. Finally, they enrich
them by activities performed for each task.

♦ From black-box to white-box scenarios. Project
P9 used black-box scenarios to represent the inter-
action of the system with its environment and in-
teractions between objects (business processes,
stakeholders, systems, and so on) in the environ-
ment. Once sufficiently understood, the develop-
ment team extended these to white-box scenarios
that also represented interaction between system
components and thus information about system-
internal aspects. Integrating white-box and black-
box scenarios defined a set of complex scenarios
describing the interaction of the environment with
specific subsystems.

♦ From informal to formal scenario definitions.
Often, developers first express scenarios in free-form
prose, then impose a template structure to add more
knowledge and detect inconsistencies and gaps. They
then transform the structured texts into more formal
representations such as message trace diagrams. This
transformation adds more knowledge and helps de-
tect inconsistencies and gaps. The safety-critical pro-
ject P11 even transformed its MTDs into a formal pro-
tocol specification language. Keeping the different

4 2 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

Users need better
tools to manage

the scenarios and
their relations.

.

scenario representations consistent proved difficult,
since each transformation and correction of inconsis-
tencies and gaps caused content changes. In addi-
tion, only a subset of stakeholders could understand
the different representation formats—for example,
adding a new interaction during the definition of a
MTD or changing an existing interaction required
back-propagating the changes to the textual scenario
definitions for customer or user validation. Especially
in large projects with a large set of scenarios, such
changes are difficult to manage.

♦ Incremental scenario development. In most pro-
jects, a scenario’s first version typically encapsulates
knowledge at different levels of detail. Validating
the scenarios through review techniques or check-
ing the scenario against other domain models im-
proves the scenario as more knowledge is added or
parts are revised.

In all four types of scenario evolution, our inter-
view partners face these problems:

♦ identifying the right level of granularity and ab-
straction during scenario development and usage,

♦ keeping the various scenario versions and the
different representations used consistent, and

♦ supporting the management of changes
across the different types and versions of scenarios,
especially if a scenario encapsulates knowledge of
different levels of abstractions.

Deriving test cases from scenarios
Nearly all developers we interviewed mentioned

the need to base system tests on the scenarios de-
fined with the customer during requirements engi-
neering and system design. This means supporting
the system developer in proving to the customer that
the implemented system meets the requirements.

However, we found that current practice rarely
satisfies this demand. Often, the scenarios devel-
oped during requirements engineering and system
design were out of date by the time system testing
began. Most projects therefore lacked a systematic
approach for defining test cases based on scenar-
ios. As mentioned earlier, the coverage require-
ments of test cases may also conflict with the goal
of complexity reduction, which implies a small num-
ber of scenarios.

Traceability
Many developers also mentioned the need for

better traceability support, with traceability seen as
a prerequisite for establishing life-cycle-wide use of
the scenarios defined during requirements engi-

neering. Out-of-date scenarios were inconsistent
with current design prototype versions and thus
could not be used as a basis for test cases.

Traceability enables integration of change, help-
ing users keep scenarios up to date. Developers
should establish traceability between levels of sce-
nario abstractions, views on scenarios, scenario ver-
sions, scenarios and prototypes, scenarios and the
specification, and scenarios and test cases.
Establishing traceability requires
understanding the relations be-
tween the artifacts produced
during the development project
and the scenarios.

Users also need better tools to
manage the scenarios and their
relations. We observed a frequent
lack of appropriate tool support
and the inability to manually assure consistency be-
tween scenarios, and between scenarios and other
artifacts. Hardly any two projects used the same
tools for scenario management, except for the word
processor! This indicates that no generally accepted
tools exist.

IMPLICATIONS

Both the success stories from practice and the
pitfalls and shortcomings of current methods pose
new challenges for research. The site visits clearly
highlight scenarios as pervasive artifacts used
throughout a system’s life cycle. They serve mani-
fold purposes and must therefore be managed with
more care than is usually discussed in the literature.
The implications of these observations concern
both practitioners and researchers.

Recommendations for the practitioner
Our investigation unearthed many excellent

ideas for scenario use, among them the use of sce-
narios as “bridges”:

♦ To business processes. Use scenarios to relate
system functionality to business process, and vice
versa. Concentrating on one usage aspect at a time
and expressing relations between the system and
business processes help developers manage the
complexity of the application domain.

♦ Between customer/user and developer. Use sce-
narios as a communication medium between do-
main experts (customers, users) and the software
and requirements engineers. Scenarios—in con-

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 4 3

Use scenarios
to relate system
functionality to
business process,
and vice versa.

.

junction with prototypes and glossaries—serve to
transfer knowledge between both groups of peo-
ple and to explain and illustrate terminology.

♦ Between architectural and implementation
components. Use scenarios not only during require-
ments engineering but also during design and im-
plementation to describe, test, and validate inter-
faces of various architectural and implementation
components.

♦ Between developers. Use scenarios to distrib-
ute work among software engineers. For example,
scenarios help divide the overall system, and there-
fore design tasks, into subsystems during the de-
sign phase. Scenarios can serve a similar purpose
during implementation and testing.

♦ Between software development phases. Use
scenarios, along with abstract models, to trans-
fer knowledge across software development
phases—for example, requirements engineering
and design, or requirements engineering and sys-
tem testing. Scenarios capture valuable back-
ground and environment information that en-
ables the stakeholders of later phases to better
understand the desired system.

♦ Between structure and behavior. Use scenarios
to highlight the dynamics between various static
components of a system defined using, for exam-
ple, the Unified Modeling Language.14 In well-un-
derstood domains, scenarios can even help users
predict the influence of a system on its environment
by, for example, envisioning changes in the envi-
ronment caused by using the new system.

Challenges for research
While focusing strictly on scenario roles may clar-

ify specific issues, it also tends to obscure the deep
intertwining these bridging functions imply. These
implications raise management problems not yet
adequately addressed by research.

Extensions and interrelation with other
techniques

About two-thirds of the visited projects claimed
to follow the OO software engineering approach,15

but all broadened the concept significantly, as some
authors in the literature also suggest. For example,

some system-internal and context scenarios in-
volved extensions that Jacobson explicitly excluded
(but others16,17 predicted as necessary). Others gen-
eralized the structuring mechanisms offered or
linked scenarios to design-level prototypes (as re-
ported for the Danish Great Belt project18).

Most agree scenario development should be in-
tegrated with prototypes to validate the scenarios or
to validate the prototypes based on scenarios. While
this integration is treated formally in literature,3,19 we
observed a more informal use of scenarios in con-
junction with prototypes and other software artifacts.
Researchers must seek to better understand the re-
lationships of scenario methods to other techniques
and extend the scope of scenarios.

Evolution and management
The management of scenarios in the various pro-

jects and the classification of research contribu-
tions12 illustrated similarities in managing the evo-
lution of software artifacts and scenarios. The main
difference is the customer’s continuous involvement
in scenario management, which requires keeping
user-understandable scenario representations con-
sistent with formally analyzable ones. This makes
evolution management for scenario-based ap-
proaches even more difficult than for more formal
parts of the software process.

Traceability
Establishing comprehensive support for manag-

ing traceable scenario development and usage re-
quires a better understanding of the relations be-
tween the scenarios and the other software artifacts.

Process guidance
Most project developers had to decide when to

develop which kind of scenario, at which level of
abstraction, and when to stop—that is, when the
development and use of scenarios paid off. At all
sites this emerged as a major problem in applying
scenarios to real-world projects, and most devel-
opers saw scenario creation more as a craft than an
engineering task.

The richness of scenario usage and manage-
ment problems we encountered indicates

the importance of comprehensive process guid-
ance. This remains a distant prospect until we fur-
ther investigate extensions and tailored applica-
tions of scenarios and provide more adequate
tool support. ❖

4 4 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 8

Scenarios are useful during design
and implementation to describe,

test, and validate components.

.

M a r c h / A p r i l 1 9 9 8 I E E E S o f t w a r e 4 5

ACKNOWLEDGMENTS
This work was supported in part by Esprit Reactive Long

Term Research Project 21.903 (Crews), which involves RWTH
Aachen, City University London, University of Namur
(Belgium), and Université Paris-Sorbonne. We are grateful to
the members of the industrial advisory committee of the
Crews project, most notably its chairman Peter Hruschka, for
their support in establishing contacts to scenario projects.

REFERENCES
1. I. Jacobson et al., Object-Oriented Software Engineering: A Use

Case Driven Approach, Addison-Wesley, Reading, Mass., 1992.

2. B. Regnell, K. Kimbler, and A. Wesslén, “Improving the Use
Case-Driven Approach to Requirements Engineering,” RE 95:
Proc. Int’l Symp. Requirements Eng., IEEE Computer Society
Press, Los Alamitos, Calif., 1995, pp. 40-47.

3. P. Hsia et al., “Formal Approach to Scenario Analysis,” IEEE
Software, Vol. 11, No. 2, Mar. 1994, pp. 33-41.

4. C.Potts, K. Takahashi, and A. Anton, “Inquiry-Based
Requirements Analysis,” IEEE Software, Vol. 11, No. 2, Mar.
1994, pp. 21-32.

5. J. Carroll, “The Scenario Perspective on System Development,”
Scenario-Based Design: Envisioning Work and Technology in
System Development, J. Carroll, ed., John Wiley & Sons, New
York, 1995, pp. 1-18.

6. T. Bui, D. Kersten, and P.-C. Ma, “Supporting Negotiation with
Scenario Management,” Proc. 29th Hawaii Int’l Conf. System
Sciences, Vol. III, IEEE Computer Soc. Press, Los Alamitos, Calif.,
1996, pp. 209-218.

7. M. Lubars, C. Potts, and C. Richter, “A Review of the State of the
Practice in Requirements Modeling,” RE 93: Proc. Int’l Symp.
Requirements Eng., IEEE Computer Soc. Press, Los Alamitos,
Calif., 1993, pp. 2-14.

8. K.E. Emam and N. Madhavji, “A Field Study of Requirements
Engineering Practices in Information Systems Development,”
RE 95: Proc. Int’l Symp. On Requirements Engineering, IEEE

Computer Soc. Press, Los Alamitos, Calif., 1995, pp. 68-80.

9. P. Gough et al., “Scenarios—An Industrial Case Study and
Hypermedia Enhancements,” RE 95: Proc. Int’l Symp.
Requirements Eng., IEEE Computer Soc. Press, Los Alamitos,
Calif., 1995, pp. 10-17.

10. L. Catledge and C. Potts, “Collaboration During Conceptual
Design,” Proc. 2nd Int’l Conf. Requirements Eng., IEEE Computer
Soc. Press, Los Alamitos, Calif., 1996, pp. 182-189.

11. K. Pohl, “The Three Dimensions of Requirements Engineering,”
Information Systems, Vol. 19, No. 2, 1994.

12. C. Rolland et al., “A Proposal for a Scenario Classification
Framework,” to appear in Requirements Eng. J., Vol. 3, No. 1, 1998.

13. Crews Team, “Scenario Usage in Industrial Practice: A
Summary of 15 Site Visits,” Tech. Report, Crews Report Series
No. 97-10, Aachen, Germany, 1997.

14. Rational Software Corp., Unified Modeling Language,
http://www.rational.com, 1997.

15. I. Jacobson, “The Use-Case Construct in Object-Oriented
Software Engineering,” Scenario-Based Design: Envisioning
Work and Technology in System Development, J. Carroll, ed.,
John Wiley & Sons, New York, 1995, pp. 309-336.

16. K. Kuuti, “Work Processes: Scenarios as a Preliminary
Vocabulary,” Scenario-Based Design: Envisioning Work and
Technology in System Development, J. Carroll, ed., John Wiley &
Sons, New York, 1995, pp. 19-36.

17. K. Pohl and P. Haumer, “Modeling Contextual Information
about Scenarios,” Proc. 3rd Int’l Workshop Requirements Eng.:
Foundation for Software Quality (REFSQ 97), Presses Univ. de
Namur, Namur, Belgium, 1997, pp. 187-204.

18. M. Kyng, “Creating Contexts for Design,” Scenario-Based Design:
Envisioning Work and Technology in System Development, J.
Carroll, ed., John Wiley & Sons, New York, 1995, pp. 85-107.

19. E. Dubois, P.D. Bois, and F. Dubru, “Animating Formal
Requirements Specifications of Cooperative Information
Systems,” Proc. 2nd Int’l Conf. Cooperative Information Systems
(CoopIS 94), 1994, pp. 101-112.

Klaus Weidenhaupt is a research assistant in the
Information Systems group at the Aachen
University of Technology, Germany, where he re-
ceived a diploma in computer science in 1995. His
research interests include scenario-based require-
ments engineering, process modeling, process-
centered engineering environments, and flexible
CASE tool architectures.

Klaus Pohl is a senior researcher in the Information
Systems group at Aachen University of
Technology, where he obtained a PhD in 1995. His
research interests include requirements engineer-
ing, process-integrated engineering environments,
traceability, and process improvement. He has
been a workgroup leader for the Crews research
project and for the Esprit Basic Research Action on

novel approaches to theories underlying requirements engineering
(Nature). He initiated the international workshop series on Requirements
Engineering: Foundations of Software Engineering (REFSQ) and serves
on the editorial board of The Requirements Engineering Journal. He is the
vice-chair of the GI requirements engineering interest group and a mem-
ber of GI, IEEE, and the IFIP requirements engineering working group 2.9.

About the Authors

Matthias Jarke is professor of information systems
and chairman of the informatics department at
Aachen University of Technology. He earned a PhD
from the University of Hamburg in 1980. His
research interests include development and usage
of meta-information systems for cooperative de-
sign applications. He has coordinated three
European Esprit projects in this field: Daida (knowl-

edge-based information system environments), Nature, and Crews. He is
Editor-in-Chief of Information Systems and was program chair of the 1997
International Conference on Very Large Data Bases.

Peter Haumer is a research assistant in the informa-
tion systems group at the Aachen University of
Technology. His research interests include require-
ments engineering with scenarios, hypertext, and
multimedia as well as object-oriented modeling and
component-based design. Haumer received a
diploma in computer science from University of
Aachen in 1995.

Contact Weidenhaupt at Lehrstuhl Informatik V, RWTH Aachen, Ahornstr.
55, 52056 Aachen, Germany, e-mail weidenh@informatik.rwth-
aachen.de.

.

